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Chapter 1

Introduction

This is a thesis in the intersection of automated reasoning and proof theory.
It is in the field of automated reasoning because it is a detailed analysis of
certain search space redundancies that, in the end, may lead to more efficient
theorem provers. It is in the field of proof theory because formal proofs and
properties of such are analyzed in great detail. The thesis is foundational in
nature and investigates the fundamentals and the metatheory of a method
called variable splitting.

Very briefly, variable splitting is a method applicable to free-variable tableaux,
free-variable sequent calculi, connection methods, and matrix characteriza-
tions, that reduces redundancies in the search space by exploiting a relation-
ship between branching formulas and universal formulas. Using contextual
information to differentiate between occurrences of free variables, the method
admits conditions under which these occurrences may safely be assigned
different values by substitutions or assignments.

The following introduction is deliberately written in a less technical jargon.
However, to appreciate it, the reader should have been exposed to basic logic
and methods for proof search. Familiarity with tableau methods or sequent
calculus should suffice. For an introduction to logic, consult, for example,
[vD04], [Fit96], or [Gal86].
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1. Introduction

1.1 Influential Ideas in Automated Reasoning

Efficient proof search depends on the ability to sufficiently reduce the complex-
ity of the search space at hand. The following is a small collection of general
ideas and guiding principles, of course not exhaustive, that are essential to
this end and that have been influential in the field of automated reasoning.
Moreover, they are important for both motivating and justifying the research
on the method of variable splitting.

The Utilization of Independent Subgoals. The identification and utiliza-
tion of independent subgoals is an important divide-and-conquer principle
in automated reasoning. The division of a goal into independent, smaller
subgoals, may reduce the complexity of a search space significantly. For ex-
ample, to prove a conjunction, it is advantageous to prove each conjunct
independently, whenever this is possible.

Least-commitment. The principle of least-commitment is crucial for efficient
proof search. An obvious example is the use of free variables1 as placeholders
for terms, which leads to significant improvements for tableau-based theorem
provers. The difference between ground and free-variable tableaux is that the
rules of the former instantiate formulas with arbitrary terms, whereas the
rules of the latter instantiate formulas with fresh, free variables, functioning
as placeholders. The instantiation of these may then be postponed, and, in the
end, decided on the basis of a unification problem. Free variables provide the
freedom to not commit, but to instantiate at a later point, when one knows
what the clever choices are. The use of free variables also makes the use of
efficient unification procedures possible.

Search Space Redundancies. In his PhD thesis, Automated Proof-Search In
Nonclassical Logics [Wal90], Wallen identified three major redundancies in the
search space induced by sequent calculi: notational redundancy, irrelevance, and
nonpermutability. For example, tableau calculi are less notationally redundant
than sequent calculi, because formulas are not repeated unnecessarily. No-
tational redundancy is typically resolved by some sort of structure sharing.
The problem of irrelevance is the problem of dismissing alternatives that may
not lead to a proof. In general, this is unavoidable, but one attempts at reduc-
ing the redundancy as much as possible. For example, in connection-based
methods, the order of expansions is driven by the deep structure of formulas
instead of by the outermost connectives, like in simple methods based on

1Free variables in this context are also referred to as, for example, dummies, metavariables, and
instantiation variables, the usage of which at least dates back to the Swedish logicians Kanger and
Prawitz [Kan83, Pra60].
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1.1. Influential Ideas in Automated Reasoning

tableau calculi. Wallen considered the last type of redundancy, properties of
nonpermutability, to be the most fundamental problem with sequent-based
proof search. The study of permutation properties goes back to Kleene [Kle52]
and Curry [Cur52], but permutations are also mentioned in more recent work
as, for example, Troelstra and Schwichtenberg’s Basic Proof Theory [TS00]
or Waaler’s Connections in Nonclassical Logics [Waa01]. A permutation of a
derivation is obtained by interchanging the order of the inferences, and if the
property of being a proof is preserved under this operation, the derivation
is said to be proof invariant under permutation. However, the presence of
strong dependencies between rules, such that the derivations are not proof
invariant under permutation, gives rise to redundancies in the search space.
Some order of rule application may quickly lead to a proof, whereas others
may cause the search to go on forever. By eliminating, or at least reducing,
such dependencies, the search space may be minimized. Wallen viewed matrix
methods as derived from considerations of redundancies of this kind, and
provided a detailed analysis of how such redundancies emerge for modal and
intuitionistic logic, as well as how they may be overcome.

Goal-directedness. Goal-directed proof search is perhaps most clearly seen
in connection-based methods based on matrix characterizations of logical
validity [Bib81, And81, Bib82b, Wal90, OB03]. Informed by pairs of comple-
mentary formulas, called connections or matings, these methods may efficiently
eliminate irrelevant parts of a search space, parts that cannot possibly lead to
a proof. Moreover, goal-directed proof procedures are often connection-driven
in the sense that only steps that may lead to connections, and thus proofs, are
performed. The freedom to select formulas arbitrarily and unconstrained is
crucial for the implementation of goal-directed proof search. Therefore, goal-
directedness relies to some extent on the steps of an inference system being
freely permuting. In particular, for tableau or sequent calculi, it is desirable to
have proof invariance under permutation such that the rules may be applied
in any order.

The Representation of Metaproperties. An important idea in logic is that
of syntactically representing selected metaproperties of a calculus or logic.
A canonical example is that of Skolemization, where function symbols rep-
resenting choice functions are introduced. The applications and advantages
of Skolemization are far-reaching; for example, it is necessary for some ver-
sions of Herbrand’s Theorem [Her30]. Another example is Hilbert’s epsilon
calculus [Ack24, HB39] and the use of ε-terms. Yet another example is the use
of labels, for example in labelled deductive systems [Gab96, Vig00], prefixed
tableaux for modal and intuitionistic logic [Fit83], or Wallen’s matrix charac-
terizations of modal and intuitionistic logic [Wal90], where labels are used
both for encoding semantics and as tools for facilitating proof search.

3



1. Introduction

1.2 Perspectives on Variable Splitting

To set the stage, I shall here present several different, but closely related, views
on the method of variable splitting, and explain how these are related to the
preceding ideas and principles. One may argue that the following perspectives
are not only closely related, but essentially equivalent. Although this may be
true, it nevertheless provides a better understanding of the method to view it
from several different perspectives.

Identifying Independent Variables. Variable splitting is a method for de-
tecting variable independence in various free-variable calculi, that is to say, for
detecting when it is consistent to assign different values to different occur-
rences of free variables. When a free variable occurs in different contexts,
typically different branches of a derivation, variable splitting provides a crite-
rion for deciding whether different values may be assigned to the different
occurrences.

Variable splitting allows for logically independent variable occurrences to be
treated independently.

A complicating fact is that two variables, u1 and u2, might be independent
if and only if two other variables, v1 and v2, are dependent. In other words,
there are cases where it is consistent to assign different values to u1 and u2 if
and only if v1 and v2 are not assigned different values.

The detection of independent variables especially pertains to the idea of utiliz-
ing independent subgoals, because it becomes possible to divide a complex
problem into smaller and simpler subproblems. Furthermore, identifying
variables as independent increases the freedom of instantiation, which is in
accordance with the principle of least-commitment.

Combining Unifiers. In nondestructive free-variable tableau calculi, a proof
is usually obtained by closing all branches simultaneously with a single unifier,
one that gives an axiom for each branch. To do this, it must clearly be possible
to close each branch individually. Given a closing unifier for each branch,
variable splitting provides a precise analysis of whether these unifiers are
sufficient for closing the whole derivation.

Variable splitting states precise conditions under which local solutions may
be combined into global solutions.

4



1.2. Perspectives on Variable Splitting

Because variable splitting provides a mechanism for combining unifiers, it
becomes possible to solve subproblems individually. From this perspective,
subproblems are not directly identified as independent, but knowing that
local solutions may be combined into global ones, this amounts to the same
thing. Furthermore, the possibility of combining solutions makes it possible
to search with less regard to the order of rule applications, and therefore it
may be taken both as an enforcement of goal-directedness and the principle
of least-commitment.

Eliminating Nonpermutabilities. There are redundancies in the search
space induced by free-variable calculi that are specifically targeted by vari-
able splitting. A detailed analysis of this may be found in Section 2.3. The
redundancies in question are caused by the order in which particular rules are
applied, namely the rules that introduce free variables and the rules that cause
branches to split. The standard free-variable calculi do not have derivations
that are proof invariant under permutation, and, consequently, if the rules are
applied in a non-optimal order, the resulting proofs are unnecessarily long.

Variable splitting removes search space redundancies caused by nonper-
mutabilities in standard free-variable calculi.

Technically, this is achieved by encoding, and extracting information about,
dependencies between the aforementioned rules. This is explained in terms of
representing metaproperties in the next paragraph. The search space becomes
less redundant because the search may be done without these dependencies.
This perspective on variable splitting is closely related to the methodology
introduced by Wallen [Wal90] in that certain search space redundancies are
identified and eliminated.

Representing Metaproperties. The last, but perhaps most important, per-
spective is that variable splitting is an explication of the dependencies between
branching formulas and universal formulas, precisely like Skolemization is an
explication of the dependencies between existential and universal formulas.
Briefly explained, the Skolemization process eliminates existential quantifiers
and introduces function symbols representing choice functions. A choice func-
tion provides witnesses for combinations of elements for universal formulas.
This is a way of making implicitly described choices (for all x, a property holds
for some y) explicit (for all x, a property holds for f(x)). One could also describe
this as bringing the semantics into the syntax. The process yields equisatis-
fiable formulas and is extremely useful in automated reasoning. In precise
analogy, the method of variable splitting introduces relations representing
dependencies between branching formulas and universal formulas. Branching
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1. Introduction

formulas are not eliminated, like existential formulas are in Skolemization,
but exactly the same type of dependence is represented. For every combi-
nation of elements for universal formulas, a corresponding choice function
must provide witnessing subformulas. This becomes very clear in the soundness
proof for variable splitting, where instead of choosing an element from some
domain, which is common for similar proofs about Skolemization, one of the
subformulas is chosen. As an alternative to this semantic perspective, where
Skolemization and variable splitting are seen as representing semantic proper-
ties, there is also a corresponding proof-theoretical perspective. In traditional
ground calculi, like Gentzen’s LK, there are strong dependencies between the
quantifier rules, resulting in the aforementioned nonpermutabilities. These de-
pendencies are effectively eliminated by using free variables and the building
of Skolemization into the rules of the calculus, as done, for example, in [HS94]
and further developed in [BHS93, BF95, GA99, CA00]. The removal of these
dependencies has the effect that the order of applications of quantifier rules
no longer influences the resulting derivations. This is spelled out in detail in
Chapter 2.

Variable splitting explicitly represents dependencies between branching for-
mulas and universal formulas.

In a similar fashion, variable splitting has the effect that the order of rule
application between rules that branch and rules that introduce variables does
not affect the end result. Whereas for Skolemization it is possible to transform a
problem into so-called Skolemized normal form, there is no known analogous
transformation for variable splitting. Instead, the dependencies are represented
by relations between formulas, similar to the treatment of Skolemization (An
Alternative for Skolemization) in [Bib87, IV.8, pp.169–176].

There are deep reasons for the correspondence between Skolemization and
variable splitting. The most perspicuous reason is related to the view of
quantifiers as infinite connectives. For instance, an existentially quantified
formula may be taken as the infinite disjunction of its ground instances.
Whereas Skolemization captures the possibly infinite choice of an instance,
variable splitting captures the corresponding finite choice of subformula. This
insight is put to good use in the construction of interesting examples.

Other Motivations. Ground calculi have one significant advantage over free-
variable calculi, namely that a branchwise restriction of the search space is
possible. For instance, in some cases, this makes early termination possible in
cases of unprovability. With the introduction of free variables, the choices of
values for variables may be delayed, but at the cost of strong dependencies
between branches. Variable splitting remedies this tension by providing the
means for branchwise search strategies.

6



1.3. A Short History of Variable Splitting

Variable splitting provides a basis for branchwise search strategies and termi-
nation conditions in free-variable calculi.

Another method for characterizing variable independence and limiting the
amount of redundancy in free-variable calculi is that of identifying universal
variables, first presented in [BH92], and treating them independently of one
another [Let98, Häh01, LS03].

Variable splitting generalizes universal-variable methods.

In terms of variable independence, universal variables are variables that are
independent from all other variables. Variable splitting provides a more fine-
grained analysis and a more general method, with which it is possible to
resolve more redundancies.

1.3 A Short History of Variable Splitting

Early History and Splitting by Need. The idea of variable splitting was first
introduced by Wolfgang Bibel for the matrix framework in his book Automated
Theorem Proving [Bib82a, Bib87] under the heading Splitting by Need. Bibel
traced the underlying motivations and ideas back to, for instance, a paper by
Bledsoe, Splitting and Reduction Heuristics in Automatic Theorem Proving [Ble71],
and a paper by Ernst, The Utility of Independent Subgoals in Theorem Prov-
ing [Ern71]. In these early papers, the central idea was that of splitting goals
into independent subgoals for more efficient theorem proving. Bibel wanted to
employ a similar independent treatment of subgoals in his connection method
and proposed to include Splitting by Need into the unification process for this
method. This was the birth of variable splitting. Bibel also realized that if
subgoals shared free variables, they were not completely independent, and,
consequently, that extra measures had to be taken to treat these subgoals
independently in a sound way.

Recent Developments. Bibel’s contribution passed largely unnoticed by the
tableau community for many years. A new method for variable splitting
was developed by myself and Arild Waaler at the University of Oslo around
2003. We were aware of Bibel’s work, but our method was nevertheless quite
different from Splitting by Need. For instance, it was more syntactic in nature
and started with a free-variable sequent calculus as the point of departure.
The resulting paper [WA03] was presented at the TABLEAUX 2003 conference.

7



1. Introduction

Although the paper contained many valuable ideas and intuitions, it was in
many respects unnecessarily complicated and hard to read. More seriously, as
I discovered shortly after publication, the admissibility condition on proofs
was too weak, and the calculus was inconsistent. The problem, and a coun-
terexample showing the inconsistency, was presented by myself in a small
paper [Ant04] for the Doctoral Programme at the IJCAR conference in 2004.

It turned out to be a challenge to define variable splitting in such a way that it
was both interesting and consistent. Either it provided too much freedom to
treat variable occurrences differently, and the calculus became inconsistent,
or it provided too little freedom, in which case consistency became trivial.
The challenge was to prove consistency for a sufficiently liberal calculus. The
solution came with a paper [AW05] that was presented at the TABLEAUX
2005 conference. An extended and improved version of this paper [AW07a]
was published in a special issue of the Journal of Automated Reasoning in 2007.
A paper [AW07b] applying and extending the variable splitting method to
intuitionistic propositional logic was presented at the CADE 2007 conference.

Overview of the Author’s Relevant Publications. Parts of this thesis are
based on the following publications (in chronological order).

A Free Variable Sequent Calculus with Uniform Variable Splitting. (Joint with Arild
Waaler.) In Automated Reasoning with Analytic Tableaux and Related Methods:
International Conference, TABLEAUX, Rome, Italy, number 2796 in LNCS, pages
214–229. Springer-Verlag, 2003.

This was the first steps toward a more general method for variable splitting.
Despite its inconsistency, the paper introduced several useful notations and
motivated variable splitting from a proof-theoretical perspective. The paper
attempted to define variable splitting in a purely equational way, an approach
that was ultimately not very fruitful.

Uniform Variable Splitting. In Contributions to the Doctoral Programme of the Second
International Joint Conference on Automated Reasoning (IJCAR 2004), Cork, Ireland,
04 July - 08 July, 2004, volume 106, pages 1–5. CEUR Workshop Proceedings,
2004. Online: http://ceur-ws.org/Vol-106/01-antonsen.pdf.

In this 5-page paper, the notion of variable independence was introduced, and a
counterexample showing the inconsistency of [WA03] was presented.
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1.3. A Short History of Variable Splitting

Consistency of Variable Splitting in Free Variable Systems of First-Order Logic. (Joint
with Arild Waaler.) In Bernhard Beckert, editor, Automated Reasoning with
Analytic Tableaux and Related Methods: 14th International Conference, TABLEAUX,
Koblenz, Germany, volume 3702 of Lecture Notes in Computer Science, pages
33–47. Springer-Verlag, 2005.

This paper provided a soundness proof for variable splitting. Moving away
from the purely equational view, although not completely, the admissibility
condition was instead defined in terms of a well-founded relation, which
provided the technical means necessary to prove soundness. The paper also
explained how variable splitting is strictly more general than similar methods
for detecting universal variables. Additionally, the paper stated the problem
of liberalizations.

Liberalized Variable Splitting. (Joint with Arild Waaler.) Journal of Automated
Reasoning, 38:3–30, 2007.

This started as an extended journal article based on the previous paper, but
expanded into much more. The equational view was completely abandoned
in favor of a more abstract (and aesthetically pleasing) view, and almost
everything was rewritten from scratch. The article defined an important
liberalization of variable splitting and showed an exponential speedup in
terms of proof length in comparison with standard free-variable calculi and
nonliberalized variable splitting. It is, apart from this thesis, the most complete
and mature presentation of variable splitting available, and it covers all of the
necessary technical background.

A Labelled System for IPL with Variable Splitting. (Joint with Arild Waaler.)
In CADE-21, 21th International Conference on Automated Deduction, Bremen,
Germany. Springer-Verlag, 2007.

In this paper, the method was successfully applied to a free-variable calculus
for intuitionistic propositional logic.
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1. Introduction

1.4 Delimitations and Applicability

The topic of this thesis is the fundamentals and the metatheory of variable
splitting, considered a method for variants of free-variable calculi, like free-
variable tableaux, free-variable sequent calculi, connection methods, and
matrix characterizations. For the purpose of the investigation, the particular
choice of logic and inference system is to some extent irrelevant. Classical
first-order logic (without equality) is a natural choice and the main focus of
the thesis, because it is both well-understood and rich enough to illustrate
all aspects of the method. On a technical note, only nonclausal calculi that
are both cutfree and proof confluent are considered. That a calculus is cutfree
means that the rule of cut is not included, and proof confluence means that
all rules are nondestructive in the sense that if a proof exists, a derivation may
always be extended to a proof. Furthermore, proof procedures, algorithms, or
implementations that incorporate variable splitting are not under investigation,
even though the method is developed with proof search in mind. In the end,
the goal is to obtain computationally sensitive inference systems that lend
themselves to the implementation of efficient proof procedures. All rules are
analytic and applied in an inverted fashion, like in standard tableau methods,
starting with a conclusion and working toward the axioms. Although variable
splitting is not explicitly investigated as a method for matrix characterizations,
all results are expected to transfer smoothly to the matrix framework. Technical
reasons for this are given in Section 2.3. Variable splitting may be considered
a refinement of both free-variable tableaux and matrix characterizations of
logical validity, although the method is not limited to such systems.

1.5 Scientific Contribution

The contribution of this thesis is the method of variable splitting, a method
applicable to variants of free-variable calculi (like free-variable tableaux, free-
variable sequent calculi, connection methods, and matrix characterizations).
The method satisfies the following properties.

– Logically independent variable occurrences are allowed to be treated
independently.

– Precise conditions under which local solutions may be combined into
global solutions are stated.

– Search space redundancies caused by nonpermutabilities in standard
free-variable calculi are removed.

– Dependencies between branching formulas and universal formulas are
explicitly represented, analogous to Skolemization.

– A basis for branchwise search strategies and termination conditions in
free-variable calculi is provided.

10



1.6. A Few Words of Introduction

– Universal-variable methods are generalized.

– Novel characterizations of logical validity for first-order logic are de-
fined.

Technically, this is achieved by labelling variable occurrences with labels
identifying the context in which the variables occur. These labels are in turn
used for determining the dependencies between formulas.

1.6 A Few Words of Introduction

Instead of only presenting the end-result of a long and windy process of
trial and error, like most scientific publications, I wish to include some of the
rationale underlying the various definitions and concepts and some of the
approaches that were not so successful. In the publications, some choices were
made to present the material more smoothly and understandably, whereas
others were made for more logical reasons. Some of these choices are discussed
in detail here, and some topics are treated in much more detail to fill in the
gaps.

I have tried to present the material in an easily digestible manner, without
superfluous and overly technical content, and to keep definitions as simple
and elegant as possible. In other words, I have tried to write a readable thesis.
Keeping in mind that it is all too simple to present variable splitting, and
mathematics in general, in a very convoluted way (like, for example, our
first paper [WA03]), I have strived for simplicity and naturalness. I hope
that the reader appreciates the examples and comments, although sometimes
redundant, along the way. Most of the thesis should be accessible for any
reader with some background in logic.

The printed version of this thesis is in black and white, but there is also an
online PDF version with colors2 and hyperlinks. The purpose of the colors is
to guide the attention of the reader. Hopefully, this is more beneficial than
distracting. No essential information is conveyed solely by the means of colors
or colored text. For example, defined words are written in red, references and
titles of books and papers are written in green [AW07a], and splitting sets and
branch names are written in blue.

2Incidentally, a colored variable is in Section 4.3 on page 45 defined to be a variable labelled
with a set of indices.
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1. Introduction

1.7 Notational Conventions and Basics

Formal definitions of syntax and semantics for first-order logic are taken for
granted. Some terminology is fixed as follows.

Definition 1.1 (First-order Language)
A first-order language is defined in the standard way from a nonempty set of
relation symbols and a set of function symbols. Formulas are defined from
terms and relation symbols by means of the logical symbols ¬, ∧, ∨,→, ∀, and
∃, and terms are defined from quantification variables and function symbols.
A term is ground if it contains no variables, and a formula is closed if every
quantification variable occurrence is bound by a quantifier. a

Notation. To increase readability, parentheses around arguments of function
and relation symbols are omitted wherever possible. Additionally, ¬ and the
quantifiers are taken to bind stronger than ∧ and ∨, which are taken to bind
stronger than →. For example,

¬Pa∧ Pfa→ ¬∃xPx∨ Pb

should be read as

(((¬P(a)) ∧ P(f(a)))→ ((¬∃xP(x)) ∨ P(b))).

The following are some of the mathematical and notational conventions that
are followed in this thesis. The reader is advised to read this by need.

A relation R from X to Y is a subset of X× Y, and xRy means that 〈x, y〉 ∈ R.

The composition of two relations R ⊆ X× Y and S ⊆ Y × Z, written R ◦ S, is the
least relation T such that xTz if and only if there is an element y ∈ Y such that
xRy and ySz.

The transitive closure of a relation R, written R+, is the least relation R ′ extending
R such that if xR ′y and yR ′z, then xR ′z.

An R-cycle is a sequence of distinct elements, a1, . . . , an, from R such that
a1Ra2R . . . Ran and a1 = an. If there exists an R-cycle, then R is a cyclic relation.
An element of an R-cycle is a pair of consecutive elements ak and ak+1, for
1 6 k < n, such that akRak+1.

The following convenient abbreviations are used.

– a1Ra2R · · ·Ran means that a1Ra2, a2Ra3,. . . , and an−1Ran.

– xR{a1, . . . , an} means that xRai holds for all i = 1, . . . , n.

12



1.7. Notational Conventions and Basics

– x, y /∈ S means that x /∈ S and y /∈ S.

A function f from A to B is a relation from A to B such that for all x ∈ A, there
is a y ∈ B such that 〈x, y〉 ∈ f and such that if 〈x, y1〉 ∈ f and 〈x, y2〉 ∈ f, then
y1 = y2. The set A is called its domain, and the set B is called its codomain.

Let < and ≺ be binary relations on some set of which S is a subset.

– If z ≺ x < y implies z < y, for all x, y, and z,
then < is closed downwards under ≺.

– If x < y ≺ z implies x < z, for all x, y, and z,
then < is closed upwards under ≺.

– If x ∈ S and y < x implies y ∈ S, for all x and y,
then S is closed downwards under <.

– If x ∈ S and x < y implies y ∈ S, for all x and y,
then S is closed upwards under <.

– The downward/upward closures of < and S under ≺ are defined as the
least sets extending < and S that are closed downwards/upwards.

(These notions are not used until Section 6.2.)

For the most part, the following conventions for symbols are used.

– u, v,w, . . . for instantiation variables.

– x, y, z, . . . for quantification variables.

– a, b, c, . . . for constant symbols, function symbols of arity 0.

– f, g, h, . . . for function symbols of nonzero arity.

– τ, τ ′, . . . for substitutions.

– σ, σ ′, . . . for splitting substitutions.

– M,M ′, . . . for models.

– µ, µ ′, . . . for variable assignments.

– i, j, k, . . . for indices.

– F,G,H, . . . for (indexed) formulas.

– P,Q, R, . . . for atomic (indexed) formulas.

– D,D ′, . . . for derivations.

– B,C, . . . for branch names.

– S, T , . . . for splitting sets.

– θ for an arbitrary type.

The end of definitions, lemmas, and theorems, are marked with a, the end of
examples are marked with �, and the end of proofs are marked with QED.
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1. Introduction

1.8 The Contents of the Thesis

– Chapter 2 contains a brief and informal introduction to ground and
free-variable sequent calculi and identifies the kind of search space
redundancy that is targeted by variable splitting.

– Chapter 3 contains the necessary preliminaries for defining variable
splitting. A detailed account of indexed formulas, derivations, and
permutation properties is given.

– Chapter 4 is perhaps the most important chapter of the thesis and defines
the method of variable splitting.

– Chapter 5 is devoted to soundness and completeness of the calculus
defined in the previous chapter.

– Chapter 6 contains a systematic investigation of how the calculus may
be liberalized and what the effects of the different liberalizations are.

– Chapter 7 contains the more general theory of variable splitting and
shows how variable splitting may be defined in a more abstract way.

– Chapter 8 contains several interrelated parts where various aspects of
variable splitting are investigated in detail.

– Chapter 9 contains a brief conclusion and an overview of the different
variable-splitting calculi.

14



Chapter 2

A Tour of Rules and Inferences

This chapter contains a brief and informal introduction to sequent calculi
and some of the different quantifier rules under discussion. It is included to
motivate and put the rest of the work into context.

A sequent is an object of the form Γ ` ∆, where Γ and ∆ are finite multisets
of formulas. A multiset is an unordered collection of elements that may have
multiple occurrences of identical elements. It is like a set, except that it may
have repeated elements. The notation Γ, F denotes the multiset union Γ ∪ {F}.
The set Γ is called the antecedent, and the set ∆ is called the succedent of
the sequent. A sequent is valid if all models that satisfy all formulas in Γ

also satisfy at least one formula in ∆. A derivation is a finite tree of sequents
obtained by iteratively applying rules of the following form.

premiss

conclusion

premiss 1 premiss 2

conclusion

A rule relates a conclusion to one or two premisses and is used for constructing
new derivations from old ones. An instance of a rule is called an inference.
Rules are consistently read bottom-up and with proof search in mind, starting
with a root sequent as a potential conclusion of an inference, and building
a derivation by iteratively adding premisses. A leaf sequent is called closed
if it contains an atomic formula that occurs in both the antecedent and the
succedent. A closed leaf sequent is called an axiom. A proof is a derivation
where all leaf sequents are axioms.

Formulas and rules are categorized into four types—α, β, γ, and δ—following
the unifying notation of Smullyan [Smu68] originally introduced for semantic
tableaux: Formulas and rules of type α are propositional and not branching,
formulas and rules of type β are propositional and branching, formulas and
rules of type γ are universal, and formulas and rules of type δ are existential. A
precise definition of types may be found in Definition 3.3 on page 24, where
formulas are signed and sequents are defined to be sets of signed formulas,
much like in block tableaux [Smu68]. For now, notice, for example, that F∧G is
considered an α-formula when it occurs in the antecedent and a β-formula
when it occurs in the succedent.
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2. A Tour of Rules and Inferences

2.1 Ground Sequent Calculus

The rules of the ground sequent calculus are given in Figure 2.1. The calculus
goes back to Gentzen’s LK [Gen35] and corresponds to G3c in [TS00]. It
is called ground because there are no occurrences of free variables in the
derivations. The term t in the γ-rules is an arbitrary ground term, and F[x/t]
denotes the result of replacing all free occurrences of x in F with t. The γ-
formula itself is copied into the premiss, which is necessary for completeness
of the calculus. However, in examples, the copies are not displayed. The term
a in the δ-rules is a fresh constant not occurring elsewhere in the derivation.
This is usually referred to as the eigenparameter or eigenvariable condition.

α-rules

Γ, F,G ` ∆
Γ, F∧G ` ∆

Γ ` F,G,∆
Γ ` F∨G,∆

Γ, F ` G,∆
Γ ` F→ G,∆

Γ, F ` ∆
Γ ` ¬F, ∆

Γ ` F, ∆
Γ,¬F ` ∆

β-rules

Γ ` F, ∆ Γ ` G,∆
Γ ` F∧G,∆

Γ, F ` ∆ Γ,G ` ∆
Γ, F∨G ` ∆

Γ ` ∆, F G, Γ ` ∆
Γ, F→ G ` ∆

γ-rules

Γ, ∀xF, F[x/t] ` ∆
Γ, ∀xF ` ∆

Γ ` ∃xF, F[x/t], ∆
Γ ` ∃xF, ∆

(t is an arbitrary ground term)

δ-rules

Γ, F[x/a] ` ∆
Γ, ∃xF ` ∆

Γ ` F[x/a], ∆

Γ ` ∀xF, ∆

(a is a fresh constant)

Figure 2.1: The Rules of Ground Sequent Calculus.
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2.2. Free-variable Sequent Calculus

Example 2.1 (Redundancy in Ground Sequent Calculus)
Consider the following two ground sequent calculus derivations. In the left-
most derivation, the δ-rule is applied prior to the γ-rule, and in the rightmost
derivation, the other way around. Due to the eigenparameter condition, the
δ-rule must introduce a fresh constant b, and, consequently, the two leaf
sequents are different.

×
Pa ` Pa

∀xPx ` Pa

∀xPx ` ∀xPx

?
Pa ` Pb

Pa ` ∀xPx
∀xPx ` ∀xPx

Only the leftmost derivation is a proof. The closed leaf sequent is indicated by
the ×. To obtain a proof from the rightmost derivation, another γ-rule applica-
tion is necessary. (Copies of γ-formulas are not displayed in examples.) �

This sensitivity to the order of rule application is exactly what Wallen [Wal90]
referred to as redundancies arising from properties of nonpermutability. Be-
cause the leaf sequents of the derivations are not identical, the ground deriva-
tions are not proof invariant under permutation. Wallen showed how the matrix
framework could eliminate such redundancies. However, also free-variable
calculi with appropriate δ-rules eliminate such redundancies.

2.2 Free-variable Sequent Calculus

In free-variable calculi, the γ-rules introduce free variables instead of arbitrary
terms, thus delaying the actual value of a term until more information is
gathered, and the δ-rules introduce Skolem terms. This is true to the principle of
least-commitment in that unnecessary applications of γ-rules are avoided and
decisions postponed. A proof in a free-variable calculus is a derivation together
with a substitution that maps leaf sequents to axioms. The substitution is
said to close the derivation. It is customary to assume that each γ-inference
introduces a fresh free variable for instantiation. Calculi for which this is the
case are called variable-pure, following the terminology of [Waa01, AW07a].
The quantifier rules of the variable-pure free-variable calculi are given in
Figure 2.2.

Readers familiar with the various kinds of δ-rules [Fit96, BHS93, HS94, BF95,
GA99, CA00, CA07], should see that the δ-rules are identical to the liberalized
δ+-rule from [HS94]. The δ-rules are liberalized because ~u only consists of the
free variables in ∃xF or ∀xF and not all the free variables in the conclusion, like
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2. A Tour of Rules and Inferences

γ-rules

Γ, ∀xF, F[x/u] ` ∆
Γ, ∀xF ` ∆

Γ ` ∃xF, F[x/u], ∆

Γ ` ∃xF, ∆

(u is a fresh free variable)

δ-rules

Γ, F[x/f(~u)] ` ∆
Γ, ∃xF ` ∆

Γ ` F[x/f(~u)], ∆

Γ ` ∀xF, ∆

(f is a fresh Skolem function symbol; ~u

consists of the free variables in ∀xF)

Figure 2.2: The γ- and δ-rules of the Variable-Pure Free-Variable Sequent
Calculus.

the case is for the original δ-rule. The δ+-rule is perhaps the most natural of the
δ-rules; it is the one that corresponds most closely to classical Skolemization.
Any of the δ-rules, except for the original, however, could have been used for
the purpose of the current discussion.

Example 2.2 (Redundancy in Free-Variable Sequent Calculus)
The following free-variable derivations correspond to the ground derivations
in Example 2.1. Whereas the leaf sequents in the ground sequent calculus are
different there, they are identical here. The two derivations differ only in the
order of rule application. In contrast to the ground case, both derivations give
rise to proofs when taken together with substitutions that map u to a. The
closing substitutions are indicated above the leaf sequents.

u/a

Pu ` Pa

∀xPx ` Pa

∀xPx ` ∀xPx

u/a

Pu ` Pa

Pu ` ∀xPx
∀xPx ` ∀xPx

�

It is evident from this example that free-variable calculi with liberalized δ-rules
do not suffer from the same redundancies as Wallen identified with ground
calculi. This is not so surprising, because the strong dependencies between γ-
and δ-rules is exactly what the liberalized δ-rules target. With nonliberalized
δ-rules, however, the redundancies are still there.
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2.3. Another Type of Redundancy

2.3 Another Type of Redundancy

There is another type of redundancy, which arises for both ground and
free-variable calculi, that is due to properties of nonpermutability. These
nonpermutabilities result from strong dependencies between γ- and β-rules,
and not γ- and δ-rules, like in Examples 2.1 and 2.2.

Unlike the redundancies discussed by Wallen, these may not be eliminated
by some form of Skolemization. The properties of nonpermutability may be
illustrated by derivations, which differ in the order of rule application, of the
following valid sequent.

∀xPx ` Pa∧ Pb

(The choice of sequent is not completely arbitrary; it serves as a finitization of
the sequent

∀xPx ` ∀xPx.

Such finitizations highlight the parallels to Skolemization. See Section 8.12 for
other finitizations.)

Example 2.3 (Another Redundancy in Ground Sequent Calculus)
The following two ground derivations differ in the order of rule application,
and, consequently, their leaf sequents. The leftmost derivation is a proof,
whereas the rightmost is not.

×
Pa ` Pa

∀xPx ` Pa

×
Pb ` Pb

∀xPx ` Pb

∀xPx ` Pa∧ Pb

×
Pa ` Pa

?
Pa ` Pb

Pa ` Pa∧ Pb

∀xPx ` Pa∧ Pb

In the leftmost derivation, the β-rule is applied before the γ-rule. This makes it
possible, via two γ-rule applications, one in each branch, to introduce different
terms in the two branches. When the order of rule application is changed such
that the γ-rule is applied below the β-rule, like in the rightmost derivation,
then another γ-rule application is necessary in the rightmost branch to obtain
a proof. �

This redundancy is not limited to ground calculi. In the following example,
exactly the same happens in free-variable calculi, even variable-pure free-
variable calculi. Recall that in variable-pure calculi, each γ-inference introduces
a fresh free variable for instantiation.

19



2. A Tour of Rules and Inferences

Example 2.4 (Another Redundancy in Free-Variable Sequent Calculus)
The following two free-variable derivations correspond to the ground deriva-
tions in Example 2.3. The derivations differ in the order of rule application,
and, consequently, their leaf sequents.

u/a

Pu ` Pa

∀xPx ` Pa

v/b

Pv ` Pb

∀xPx ` Pb

∀xPx ` Pa∧ Pb

u/a

Pu ` Pa

?
Pu ` Pb

Pu ` Pa∧ Pb

∀xPx ` Pa∧ Pb

The leftmost derivation is a proof under a substitution that maps u to a and
v to b, whereas no substitution closes both leaf sequents of the rightmost
derivation. Like in the ground case, another γ-rule application is necessary in
the rightmost branch to obtain a proof. �

In contrast to the previous redundancies, these redundancies are neither
eliminated by methods for Skolemization nor in the matrix framework.

2.4 Variable-Sharing Calculi and Variable Splitting

Even though variable-pure calculi succeed in delaying the choice of terms,
variable-pure derivations are not proof invariant under permutation, which
is desirable from the point of view of implementing goal-directed strategies.
To achieve this invariance, and eliminate the nonpermutabilities, so-called
variable-sharing calculi may be defined.

In variable-sharing calculi, the choice of free variable in a γ-rule application is
tied to the γ-formula itself rather than to the particular inference, which is the
case for variable-pure calculi. A γ-formula that occurs in different branches
of a derivation, in variable-sharing calculi, introduces the same free variable
in all branches, and, as a result, variable-sharing derivations permute freely.
However, this variable-selection strategy is the source of a very strong variable
dependence across branches, and if nothing is done to compensate, one must
in general re-expand a number of formulas and create unnecessarily large
proof objects. The redundancy that may arise for variable-pure derivations is
unavoidable for variable-sharing derivations, the latter, on the other hand, have
capacity for goal-directed search. The distinction between variable-pure and
variable-sharing was first introduced in [Waa01]. Variable-sharing derivations
correspond closely to matrices [Bib87]; in fact, matrices may be identified with
equivalence classes of variable-sharing derivations under permutation.

20



2.4. Variable-Sharing Calculi and Variable Splitting

Example 2.5 (Variable-Sharing Derivations)
The following two derivations are the variable-sharing equivalents of the
derivations in Example 2.4. Notice that the leaf sequents are invariant under
permutation.

u/a

Pu ` Pa

×
Pu ` Pb

Pu ` Pa∧ Pb

∀xPx ` Pa∧ Pb

u/a

Pu ` Pa

∀xPx ` Pa

×
Pu ` Pb

∀xPx ` Pb

∀xPx ` Pa∧ Pb

Neither derivation gives rise to a proof without expanding another γ-
formula. �

The following is how the method of variable splitting handles the previous
examples. With variable splitting it is possible to treat each leaf sequent
individually and thereafter to combine the individual solutions. To achieve
this, the variables in a leaf sequent are labelled with a name identifying the
branch in which the leaf sequent occurs.

Example 2.6 (Variable-Splitting Derivations)
The point of departure is the variable-sharing derivations in Example 2.5.
For the purpose of this example, the branches are simply named 1 and 2. (A
general method for naming branches is defined in Chapter 4.) The names of
the branches are projected onto the free variables of the leaf sequents and the
following so-called variable-splitting derivations are obtained.

u1/a

Pu1 ` Pa

u2/b

Pu2 ` Pb

Pu ` Pa∧ Pb

∀xPx ` Pa∧ Pb

u1/a

Pu1 ` Pa

∀xPx ` Pa

u2/b

Pu2 ` Pb

∀xPx ` Pb

∀xPx ` Pa∧ Pb

Observe that the leaf sequents of the derivations are identical. Because the
variable occurrences in the two leaf sequents are labelled differently, it is
possible to obtain a “proof” from both derivations by substituting a for u1

and b for u2. �

A simple projection of labels onto variables is obviously not sound (an expla-
nation of why may be found in Example 4.2 on page 42), and the methods for
doing so in a sound way is one of the main topic of this thesis. It is necessary
to increase the level of precision to define variable splitting, and this therefore
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2. A Tour of Rules and Inferences

concludes the somewhat informal discussion of different sequent calculi. The
next chapter contains all the necessary preliminaries for defining variable
splitting.
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Chapter 3

Preliminaries

3.1 Indexing

Indexing is an indispensable tool for analyzing and defining properties of
derivations and formulas, and for reasoning about variable splitting in a
general way. It may be possible to manage without indices by using formulas
directly, or by introducing, for example, ε-terms [Ack24], but this seems very
cumbersome.

Intuitively, indices are nothing more than labels associated with formulas.
There are two main motivations for introducing indices and indexed formulas.

The first motivation is that a fine-grained system is necessary for distin-
guishing different copies of formulas. The reason is that some formulas are
generative in derivations; when they are expanded, a copy is retained for
further expansion. Indices are used to explicitly differentiate between such
copies.

Example 3.1 (Indexing Copies)
In a standard sequent calculus inference like the following, there are two
occurrences of the γ-formula ∀xAx, one in the conclusion and one in the
premiss.

Γ, ∀xAx,At ` ∆
L∀

Γ, ∀xAx ` ∆

In the indexing system to follow, these occurrences are indexed differently. It
is also possible to give them the same index, although this is not so desirable
for the purpose of defining variable splitting. �

The second motivation is that indices may be integrated into the definitions of
free variables and Skolem function symbols, and that this provides a smooth
technical machinery for reasoning about substitutions, formulas, relations
between formulas, and variable splitting in a uniform way. Both of these
motivations are discussed further in Section 8.10 on page 139.
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3. Preliminaries

Smullyan’s uniform notation [Smu68] (also called unifying notation) for types of
formulas is employed to facilitate the metatheory. For this purpose, the notion
of a signed formula is needed.

Definition 3.2 (Signed Formula)
A signed formula is a formula with a polarity, > or ⊥. A formula G with polarity
P is denoted by GP.1 a

Sequents may be represented by sets of signed formulas. For instance, a
sequent P,Q ` R, S may be represented by the set {P>, Q>, R⊥, S⊥}. Polarities
indicate whether a formula occurs in the antecedent or succedent of a sequent
and also what it means for a model to falsify a sequent. A falsifying model
must satisfy all formulas with polarity > and falsify all formulas with polarity
⊥.

The following sets are only defined relative to some given finite set of closed
and signed formulas. They are formally introduced in Section 3.2.

– The set of indexed formulas.

– The set of instantiation terms.

– The set of indexed formulas with instantiation terms.

An underlying first-order language (Definition 1.1), in which sequents may be
expressed, is taken for granted. A finite set of closed and signed formulas gives
rise to a set of indexed formulas, the formulas that may occur in derivations
(Definition 3.3). The indices that stem from the indexed formulas are used to
define a new set of terms, called instantiation terms (Definition 3.4). The final
language (Definition 3.6) is obtained by allowing instantiation terms to occur
in indexed formulas.

3.2 Indices and Indexed Formulas

The concepts of an index and an indexed formula are explained next. The
following indexing system is similar to that defined in the literature on
matrix methods by for example Bibel [Bib87], Wallen [Wal90], or Otten and
Kreitz [KO99], but differs in that indices are defined inductively and more
faithful to the construction of a derivation. It is more common in the literature
on matrix methods to define indices by means of nodes in a formula tree.

For the following definition, the only assumption is that indices are labels of
some sort and that there is an unlimited supply of them. For this purpose,

1It is also common in the literature to use the notation 〈G,1〉 and 〈G,0〉, or TG and FG, for
signed formulas.
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3.2. Indices and Indexed Formulas

indices may simply be natural numbers. The crucial property is that there is a
one-to-one correspondence between indices and indexed formulas.

Definition 3.3 (Indexed Formula)
Let Σ be a finite set of signed, closed formulas. The set of indices, the set of
indexed formulas, and the type of an indexed formula are inductively defined
from Σ as follows.

The base case. Initially, associate with each F in Σ a unique index. A pair 〈F, i〉,
written Fi, where F is in Σ and i is the associated index, is an indexed formula.
The polarity and outermost connective of Fi are taken to be that of F. If Fi has
polarity P, the indexed formula is denoted by FPi , or simply F, if the polarity
and the index is unimportant or clear from the context.

A set of indexed formulas is called a sequent. The set of indexed formulas
obtained from Σ in this way is called a root sequent.

Types. Smullyan’s uniform notation [Smu68] for types of formulas is defined as
follows. A nonatomic, signed formula F has a type—α, β, γ, or δ—determined
by its polarity and outermost connective; see the leftmost columns in Figure 3.1.
The type of an index is the type of its associated indexed formula.

α α1 α2

(F∧G)>i F>i1 G>i2

(F∨G)⊥i F⊥i1 G⊥i2

(F→ G)⊥i F>i1 G⊥i2

(¬F)>i F⊥i1 F⊥i1

(¬F)⊥i F>i1 F>i1

γ γ ′ γ1

(∀xF)>i (∀xF)>i′ F[x/i]>i1

(∃xF)⊥i (∃xF)⊥i′ F[x/i]⊥i1

β β1 β2

(F∧G)⊥i F⊥i1 G⊥i2

(F∨G)>i F>i1 G>i2

(F→ G)>i F⊥i1 G>i2

δ δ1

(∀xF)⊥i F[x/fi(~u)]⊥i1

(∃xF)>i F[x/fi(~u)]>i1

Figure 3.1: Types and Generation Rules for Indexed Formulas.

The induction step. Depending on the type of Fi, indexed formulas are
defined according to the tables in Figure 3.1. In all cases, i ′, i1, and i2 are
assumed to be fresh indices, that is, not used in any other indexed formula.
The tables should be read in the following way. If, for example, α is the

25



3. Preliminaries

indexed formula Fi, then α1 with index i1, and α2 with index i2, are also
indexed formulas, where i1 and i2 are fresh indices. In the γ- and δ-case,
F[x/t] denotes the indexed formula F where all free occurrences of x have been
replaced with t. The index i of γ is called an instantiation variable, the indexed
formula γ1 is called the instance of γ and the indexed formula γ ′ is called the
copy of γ. The symbol fi is called a Skolem function symbol, and ~u consists of
exactly the instantiation variables in δ, in the order in which they appear. The
indexed formulas β1 and β2 of an indexed β-formula are called dual and have
the secondary type β0 (in addition to their regular types, if they are nonatomic),
and the indexed formula γ1 of an indexed γ-formula has the secondary type
γ0 (in addition to its regular type, if it is nonatomic). The secondary type
of an indexed formula is not, like the type, determined by the polarity and
outermost connective; it is determined by the type of the immediate parent
formula. The type symbols are frequently used as metavariables denoting
indices or indexed formulas of that type. a

For each index there is a unique indexed formula and vice versa. Because of
this one-to-one correspondence, indices and indexed formulas are treated in
the same way. In fact, the words index and formula are used interchangeably.
Relations on formulas are considered relations on indices and vice versa.

Notice that polarities are propagated according to how formulas normally are
interpreted. For example, if α is an indexed formula (F→ G)⊥, then α1 is F>

and α2 is G⊥, which corresponds to the fact that to make F → G false, it is
necessary to make F true and G false. Also, polarities correspond to whether a
formula occurs in the antecedent or the succedent of a sequent.

In γ0-formulas, the index is used as a placeholder to be instantiated at a
later point, hence the name instantiation variable. Note that instantiation vari-
ables never occur bound and that quantification variables never occur free in
indexed formulas.

Also note that Skolemization is built into the definitions of indexed formulas:
The index i of the δ-formula is used in the Skolem function symbol fi. This
is convenient, because the main topic of this thesis is the effects of variable
splitting and because the results are independent of the particular method for
Skolemization.

Notation. The letters i, j, k, . . . are used for indices. For simplicity, the letters
u, v,w, . . . are used for instantiation variables. If ∀xPx is a γ-formula with
index u, its instance is denoted by Pu.
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3.2. Indices and Indexed Formulas

The extended term language is made explicit in the following definition.

Definition 3.4 (Instantiation Term)
The set of instantiation terms is the least set that contains the set of instantiation
variables and that is closed under function and Skolem function symbols. An
instantiation term is ground if it does not contain any instantiation variables.a

Definition 3.5 (Substitution)
A substitution is a function from instantiation variables to instantiation terms.
The domain of a substitution is extended to instantiation terms and indexed
formulas in the standard way. The application of a substitution τ to an argu-
ment x is usually written in the postfix notation xτ unless x is an instantiation
variable. The support of a substitution τ is the set of instantiation variables u
such that τ(u) 6= u. If τ(u) is ground for all u in the support of τ, then τ is
called ground. If a substitution τ has a finite support {u1, . . . , un} and τ(ui) = ti
for i = 1, . . . , n, it is denoted by {u1/t1, . . . , un/tn}. a

Recall that instantiation variables never occur bound by quantifiers. Because
of this, there is no need for a recursive definition of substitution application
that takes bound quantification variables into account. The application of a
substitution to a formula is independent of the quantifiers at hand.

The result of applying substitutions to indexed formulas does not necessarily
yield indexed formulas, according to the definitions, but such objects are
needed in derivations, where substitutions are applied to indexed formulas to
obtain axioms. Therefore, the language of indexed formulas is extended by
closing it under substitution.

Definition 3.6 (Indexed Formula under Substitution)
The language of indexed formulas with instantiation terms is obtained by closing
the set of indexed formulas under substitutions. If A is an indexed formula
and τ is a substitution, then Aτ is also an indexed formula, where Aτ is the
result of replacing all instantiation variables u in A with τ(u). a

To recapitulate: From a finite set Σ of signed, closed formulas, a set of indexed
formulas, a set of indices, and a set of instantiation terms is defined. The full
language is obtained by closing indexed formulas under substitutions.

Convention. From now on, if nothing else is specified, formula means in-
dexed formula, variable means instantiation variable and term means instantiation
term. Indices and polarities are not displayed unless it is pertinent to avoid
ambiguities.
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3. Preliminaries

3.3 The �-relation

In this thesis, several different relations on formulas are defined. Because there
is a one-to-one correspondence between indices and formulas, these are also
relations on indices.

The first and simplest relation, �, is defined in precise accordance with
how formulas are inductively defined and how formulas are expanded in
derivations.

Definition 3.7 (The�-relation)
Following the uniform notation from Definition 3.3, let�1 be the least relation
on formulas such that the following conditions hold, and let� be the transitive
closure of �1.

– α�1 {α1, α2}

– β�1 {β1, β2}

– γ�1 {γ1, γ
′}

– δ�1 δ1 a

Notation. The �-relation between formulas is displayed in the following way.

α

α1 α2

β

β1 β2

γ

γ1

γ ′ δ

δ1

It is possible to read � as before, because if F� G, then F must be expanded
before G in a derivation. In Chapter 6, two other relations, �− and l, are
introduced. The l-relation is a subset of the �−-relation, which in turn is
a subset of the �-relation. In a sense, the l-relation is a liberalization of the
�−-relation, which in turn is a liberalization of the �-relation.

3.4 The Basic Variable-Sharing Calculus

The basic variable-sharing calculus defined next is similar to block
tableaux [Smu68] in that sequents are represented as sets of signed formulas.
This simplifies the metatheory and fits well with the uniform notation. It
could also have been formulated as a standard tableau calculus (signed or
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3.4. The Basic Variable-Sharing Calculus

unsigned), a sequent calculus (one- or two-sided), or in terms of matrices, as
these systems are closely related [Sch00, Waa01].

Definition 3.8 (Derivation)
Let Γ be a root sequent. A derivation of Γ is a finite tree of sequents, with
root node Γ , obtained by iteratively applying the derivation rules given in
Figure 3.2. The set Γ ∪ {F}, where F is assumed not to be in Γ , is denoted by Γ, F.

Γ, α1, α2

Γ, α

Γ, β1 Γ, β2

Γ, β

Γ, γ ′, γ1

Γ, γ

Γ, δ1

Γ, δ

Figure 3.2: Derivation Rules for the Basic Variable-Sharing Calculus.

The rules should be read bottom-up; for example, if Γ, α is the leaf sequent of
a derivation, then Γ, α1, α2 is a new sequent added above Γ, α. The formulas, α,
β, γ, and δ, below the horizontal lines are said to be expanded in a derivation.
The formulas, α1, α2, β1, β2, γ ′, γ1, and δ1, above the horizontal lines are said
to be introduced by the inferences. The rest of the formulas in Γ are referred to
as the context. a

Notation. It is easier to read sequents in the ordinary sequent notation than as
sets of signed formulas. Consequently, sequents are displayed in the notation
Γ ` ∆, where Γ is the set of formulas with polarity > and ∆ is the set of
formulas with polarity ⊥. Selected indices are usually displayed below the
root sequent. For example, a root sequent

{∀x(Pxa∨ Pbx)>u , (Paa∨ Pbb)⊥4 }

is usually displayed as

∀x
u

(Pxa
2

∨
1
Pbx
3

) ` Paa
5

∨
4
Pbb
6
.

The instance of the γ-formula is in this case (Pua ∨ Pbu)>1 . The following
notation is used for indicating that the copy of a formula with index u has
index v.

∀x
u/v

(Pxa
2

∨
1
Pbx
3

) ` Paa
5

∨
4
Pbb
6
.
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Example 3.9 (Derivation)
The following is a derivation of ∀xPx ` Pa∧ Pb.

Pu, ∀xPx ` Pa

∀xPx ` Pa

Pu, Pv, ∀xPx ` Pb

Pu, ∀xPx ` Pb

∀xPx ` Pb

∀x
u/v
Px ` Pa

1
∧ Pb

2

Observe that ∀xPx introduces the variable u in both branches, unlike in variable-
pure calculi, where a fresh free variable is selected for every γ-rule application.
The derivations are variable sharing. �

3.5 Unifiers and Provability

Definition 3.10 (Unifier of Terms and Formulas)
A substitution τ is a unifier of two terms s and t if sσ = tσ and of two formulas
F and G of opposite polarity if Fτ equals Gτ up to indices and polarities. In
this case, τ unifies F and G. Two terms or formulas are unifiable if there exists a
unifier of them. a

Definition 3.11 (Closing Substitution)
A substitution τ closes a leaf sequent Γ of a derivation if there is a pair of
atomic formulas in Γ that are unified by τ. A substitution is closing for a
derivation if it closes every leaf sequent. a

Definition 3.12 (Proof)
If D is a derivation of Γ and τ is a closing substitution for D, then the pair
〈D, τ〉 is a proof of Γ . A proof of a formula F is simply a proof of the sequent
` F. The resulting calculus is referred to as the basic variable-sharing calculus.a

The basic variable-sharing calculus is the point of departure for defining
variable splitting.

Example 3.13 (Closing Substitution)
The substitution {u/a, v/b} closes the derivation in Example 3.9. The relevant
parts of a closing substitution are displayed above the leaf sequents as follows.
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3.6. Permutations

u/a

Pu, ∀xPx ` Pa

∀xPx ` Pa

v/b

Pu, Pv, ∀xPx ` Pb

Pu, ∀xPx ` Pb

∀xPx ` Pb

∀x
u/v
Px ` Pa

1
∧ Pb

2

The substitution is closing, and the pair of the derivation and the substitution
is a proof. �

3.6 Permutations

The study of permutation properties goes back to Kleene [Kle52] and
Curry [Cur52]. A permutation of a derivation is obtained by interchanging the
order of the inferences, and if the property of being a proof is preserved under
this operation, the derivation is said to be proof invariant under permutation.

There are two main reasons for being interested in proof invariance. The first
is related to the project of reducing search space redundancies and facilitating
goal-directed search. The second has a more technical flavor, although strongly
related to the first. If derivations are proof invariant under permutation, a
proof may be assumed to satisfy certain order restrictions, in particular, that
some formulas are not expanded above some other formulas. This assumption
is very convenient for establishing soundness of various calculi.

In the next section, the basic variable-sharing calculus is shown to be proof
invariant under permutation, that is, that none of the essential properties of a
derivation are lost if the order of inferences is changed. The underlying reason
for proof invariance is that the calculus is variable-sharing. Because γ-indices
are used as variables, the variables in a formula only depend on the formula
itself. There are, however, some subtleties and some important distinctions to
be made.

Permutation schemes for permuting two adjacent inferences in a derivation
are defined as follows. The underlying idea is that whenever two expanded
formulas in the same branch are not �-related, it is possible to permute the
inferences such that one formula is expanded below the other, or the other
way around.

Definition 3.14 (Permutation Scheme)
If a formula F is expanded in an inference, a formula G is expanded in all of the
premisses of this inference, and F� G is not the case, then the inferences may
be interchanged such that G is expanded below F. The permutation schemes to
achieve this are given here, where the inferences are labelled with the formula
being expanded. Observe that in all cases the leaf sequents are unchanged.
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3. Preliminaries

These are called symmetric permutation schemes, because the formula G is
expanded in all of the premisses.

If both F and G are formula of type α, γ, or δ, the following permutation
scheme applies. (In the δ-case there is only one introduced formula.)

Γ, F1, F2, G1, G2
G

Γ, F1, F2, G
F

Γ, F,G

becomes
Γ, F1, F2, G1, G2

F
Γ, F,G1, G2

G
Γ, F,G

If G, but not F, is a β-formula, the following permutation scheme applies.
(Symmetrically, if F, but not G, is a β-formula.)

Γ, F1, F2, G1 Γ, F1, F2, G2
G

Γ, F1, F2, G
F

Γ, F,G

becomes

Γ, F1, F2, G1
F

Γ, F,G1

Γ, F1, F2, G2
F

Γ, F,G2
G

Γ, F,G

If both F and G are β-formulas, the following permutation scheme applies.

Γ, F1, G1 Γ, F1, G2
G

Γ, F1, G

Γ, F2, G1 Γ, F2, G2
G

Γ, F2, G
F

Γ, F,G

becomes

Γ, F1, G1 Γ, F2, G1
F

Γ, F,G1

Γ, F1, G2 Γ, F2, G2
F

Γ, F,G2
G

Γ, F,G
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3.6. Permutations

If the formula G is expanded in only one of the branches above a β-inference,
it is still possible to permute, but at the cost of adding branches and changing
some of the leaf sequents. The following is an asymmetric permutation scheme
for two formulas of type β. (The other asymmetric permutation schemes are
defined similarly.)

Γ, F1, G

Γ, F2, G1 Γ, F2, G2
G

Γ, F2, G
F

Γ, F,G

becomes

Γ, F1, G1 Γ, F2, G1
F

Γ, F,G1

Γ, F1, G2 Γ, F2, G2
F

Γ, F,G2
G

Γ, F,G

To obtain the leaf sequents Γ, F2, G1 and Γ, F2, G2 in the permutation, it is
necessary to expand F in both of the premisses of the inference that expands G.
An asymmetric permutation scheme like this may only be applied provided
that G is not expanded in the leftmost branch of the initial derivation. An
equivalent approach is to expand G in the initial derivation and then apply a
symmetric permutation scheme. a

The asymmetric permutation schemes are caused by the fact that some formula
is expanded in one branch, but not in another. For this reason, a permutation
may change some of the properties of the original derivation. For instance,
the number of branches might increase drastically, as, for instance, in Exam-
ple 4.32 on page 59. The property of being a proof, however, is invariant under
permutation.

A simple assumption that gives stronger invariance properties is the following.

Definition 3.15 (Balanced Derivation)
A derivation is balanced if an expanded formula is expanded in all other
branches in which it occurs. The balancing of a derivation is the process of
expanding formulas that are expanded elsewhere in the derivation until the
derivation becomes balanced. a

If a derivation is balanced, then there is no need to consider asymmetric
permutation schemes. A disadvantage of balancing is that the number of
branches and the size of a derivation may increase exponentially. From a
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theoretical perspective, this is not a big problem; all of the proofs go through
without the assumption of balancing.

For balanced derivations, there is a one-to-one correspondence between the
leaf sequents of the derivation and a permutation of the derivation. However,
it is convenient to generalize the notion of a permutation of a derivation,
such that performing balancing steps still yields permutations. In a manner of
speaking, permutations of derivations are considered up to balancing.

Definition 3.16 (Permutation)
A derivation D ′ is a permutation of a derivation D if the set of expanded
formulas for D ′ is the same as the set of expanded formulas for D and for all
leaf sequents Γ ′ of D ′, there is a leaf sequent Γ of D such that all formulas in Γ
are �-smaller than, or equal to, formulas in Γ ′. In other words, the formulas
in Γ ′ must have been expanded at least as much as the formulas in Γ . a

A consequence of this definition is that balancing is a special case of permu-
tation; the balancing of a derivation results in a permutation of the original
derivation.

Example 3.17 (Permutation)
The rightmost of the following derivations is a permutation of the leftmost,
but not the other way around.

Pa∧ Pb ` Pc

Pa, Pb ` Pd

Pa∧ Pb ` Pd

Pa
2

∧
1
Pb
3
` Pc

5
∧
4
Pd
6

Pa, Pb ` Pc Pa, Pb ` Pd

Pa, Pb ` Pc∧ Pd

Pa
2

∧
1
Pb
3
` Pc

5
∧
4
Pd
6

Although Pa∧ Pb is not expanded in both branches of the leftmost derivation,
it is still expanded in the derivation, so the set of expanded formulas for
the two derivations are identical. Furthermore, for each leaf sequent Γ ′ of
the rightmost derivation there is a leaf sequent Γ of the leftmost derivation
such that all formulas in Γ are �-smaller than, or equal to, formulas in
Γ ′. For instance, the leaf sequent Pa, Pb ` Pc corresponds to Pa ∧ Pb ` Pc,
because Pa∧Pb� {Pa, Pb}. The leftmost derivation is not a permutation of the
rightmost, because for the leaf sequent Pa∧Pb ` Pc, there is no corresponding
sequent in the rightmost derivation. �
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3.7 Conformity and Proof Invariance

A reduction ordering is a relation on formulas that may be used to guide
the construction of a derivation or to choose between the different permu-
tations of a derivation. An important guiding intuition, that goes a long
way, is that a reduction ordering gives an optimal order in which to expand
formulas in a ground sequent calculus. For more information about reduc-
tion orderings and the correspondences between formulas, matrices, and
sequent calculi derivations, the reader may consult Bibel [Bib87], Schmitt’s
PhD thesis, Proof Reconstruction in Classical and Non-Classical Logics [Sch00],
Waaler’s chapter Connections in Nonclassical Logics [Waa01] in the Handbook of
Automated Reasoning [RV01], or some of the research papers on proof transfor-
mations [SK95, SAB99].

Definition 3.18 (Reduction Ordering)
A reduction ordering for a derivation is a transitively closed binary relation
on the expanded formulas in the derivation. It is called cyclic if it is not
irreflexive. a

Definition 3.19 (Conformity)
A derivation conforms to a reduction ordering C if FCG implies that there is
no branch where F is expanded above G. In other words, if FCG, then for every
branch of the derivation where both F and G are expanded, F is expanded
below G. a

Example 3.20 (Nonconforming Derivation)
Let C be a reduction ordering such that BCA. Then the following derivation
does not conform to C.

Γ,A1, B

Γ,A2, B1 Γ,A2, B2
B

Γ,A2, B
A

Γ,A, B

The reason is that B is expanded above A in the rightmost branch. �

The following lemma, which states a sufficient condition for the existence of
a conforming permutation of a derivation, is referred to as the Conformity
Lemma.

Lemma 3.21 (Existence of a Conforming Permutation)
Let D be a derivation, and let C be an irreflexive reduction ordering such that
� is contained in C. Then, there exists a permutation of D that conforms to
C. a
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Proof (1). The derivation may be transformed until it becomes conforming by
iteratively applying permutation schemes. Details may be found in [Waa01,
Lemma 2.14, pp.1508–1509] or [TS00, pp.164–177]. QED

Another approach, perhaps conceptually simpler, is to construct a new deriva-
tion from scratch, by induction on C, as follows.

Proof (2). Because the reduction ordering is irreflexive, and there are only
finitely many formulas in D, it is well-founded in the sense that for each
nonempty set of formulas, there is always a C-minimal element. Construct
a new derivation from D by induction on C with respect to the expanded
formulas in D. Start with the root sequent. Say that a leaf Γ ′ of the derivation
constructed so far is finished if there is a leaf Γ of D such that all formulas in Γ
are�-smaller than, or equal to, formulas in Γ ′. If the derivation constructed so
far contains an unfinished leaf sequent, expand a C-minimal formula from the
sequent that is also expanded in D and continue. This process must eventually
terminate, because there are only finitely many expanded formulas in D, and
the resulting derivation must be a permutation of D. QED

This ensures the existence of a conforming permutation of a derivation, but
the permutations that preserve certain properties, in particular that of being a
proof, are more important. The following lemma, which states that provability
is not impaired by permuting, is referred to as the Proof Invariance Lemma.

Lemma 3.22 (Proof Invariance under Permutation)
Let D ′ be a permutation of a derivation D, and let τ be a closing substitution
for D. Then, τ is closing for D ′. a

Proof. Let Γ ′ be a leaf sequent of D ′. Because D ′ is a permutation of D, there
is a leaf sequent Γ of D such that all formulas in Γ are �-smaller than, or
equal to, formulas in Γ ′. In particular, there is a pair of atomic formulas in
Γ that are unified by τ. These formulas must also be in Γ ′. Consequently, τ
closes D ′. QED

The following is the main theorem about permutations, and it is referred to as
the Permutation Theorem.

Theorem 3.23 (Existence of Conforming Proof)
Let 〈D, τ〉 be a proof of Γ , and let C be an irreflexive reduction ordering
such that � is contained in C. Then, there exists a permutation D ′ of D that
conforms to C such that 〈D ′, τ〉 is a proof of Γ . a

Proof. By the Conformity Lemma (3.21) and the Proof Invariance Lemma
(3.22). QED
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Technical Remark. An important assumption, for example in Definition 3.11
of closing substitutions, is that leaf sequents are closed by unifying pairs of
atomic formulas. The proof of Lemma 3.22 fails if substitutions are allowed to
close leaf sequents by unifying nonatomic formulas. Consider the following
derivations.

∀xPx ` ∀xPx

u/a

Pu ` Pa

Pu ` ∀xPx
∀xPx∨ Pu ` ∀xPx

∀x
u

(∀x
v
Px∨ Px) ` ∀x

a
Px

?
∀xPx ` Pa

∀xPx ` ∀xPx

u/a

Pu ` Pa

Pu ` ∀xPx
∀xPx∨ Pu ` ∀xPx

∀x
u

(∀x
v
Px∨ Px) ` ∀x

a
Px

The leftmost derivation is a proof together with the substitution {u/a}, pro-
vided that leaf sequents may be closed by unifying nonatomic formulas, but it
is not balanced, because the δ-formula ∀xPx, which introduces Pa, is expanded
only in the right branch. The rightmost derivation is the result of balancing
the first derivation, but the substitution {u/a} is no longer closing. In this case,
however, a proof may be obtained by also expanding the γ-formula ∀xPx.

3.8 Semantics

The material in this section is mostly standard; see, for example, [Häh01] for
a more thorough treatment.

Definition 3.24 (Semantics)
A model M consists of a nonempty domain |M| over which function, Skolem
function, and relation symbols are interpreted appropriately. An assignment
is a function from variables to |M|. Terms and formulas are interpreted in
models under assignments in the standard way; see Definition 3.25 for details.
(Recall that a formula means an indexed formula and that it has a polarity;
semantics is thus only defined for signed formulas.) A term model is a model
M whose domain consists of ground terms such that if t is an element of M,
then tM = t. The notation M, µ |= F denotes that F is true in a model M under
an assignment µ. If Γ is a set of formulas, then M, µ |= Γ means that M, µ |= F

holds for all F ∈ Γ . Formulas with free variables are interpreted universally,
and M |= F and M |= Γ mean that M, µ |= F and M, µ |= Γ , respectively, holds
for all assignments µ. A model M is a countermodel for a sequent Γ under
an assignment µ if M, µ |= Γ . (In terms of ordinary sequents of unsigned
formulas, this means that all formulas in the antecedent are satisfied and

37



3. Preliminaries

that all formulas in the succedent are falsified. Because of polarities, and the
fact that a sequent is defined as a set of signed formulas, this is the same
as making all the signed formulas in the sequent true.) A valid sequent is a
sequent for which there is no countermodel. a

Definition 3.25 (Interpretation under Assignment)
Let M be a model and µ an assignment. For the purpose of interpreting
formulas, the domain of µ is extended to contain all quantification variables,
and quantification variables are allowed to occur freely in formulas. Terms
are interpreted in the following way.

– xM,µ = µ(x), for a variable x, and
– f(t1, . . . , tn)M,µ = fM(tM,µ1 , . . . , t

M,µ
n ),

where f is a (Skolem) function symbol of arity n.

The notations γ(x) and δ(x) are used for explicating the bound quantification
variable x, and γ1(x) and δ1(x) denote the respective formulas without their
quantifiers. (Thus, if δ(x) is a formula, then δ1 is the formula δ1(x) after all
free occurrences of x have been replaced with fi(~u), where i is the index of
δ(x) and ~u consists of the instantiation variables in δ(x), like in Definition 3.3.)
Formulas are interpreted in the following way. (Indices do not play a part in
the interpretation and are not displayed.) If M, µ |= F, then F is said to be true
in the model M under the assignment µ.

– M, µ |= R(t1, . . . , tn)> iff 〈tM,µ1 , . . . , t
M,µ
n 〉 ∈ RM, and

– M, µ |= R(t1, . . . , tn)⊥ iff 〈tM,µ1 , . . . , t
M,µ
n 〉 /∈ RM,

where R is a relation symbol of arity n.
– M, µ |= α iff M, µ |= α1 and M, µ |= α2.
– M, µ |= β iff M, µ |= β1 or M, µ |= β2.

Let µdx be the assignment such that µdx(w) =

{
d if w = x, and
µ(w) otherwise.

– M, µ |= δ(x) iff M, µdx |= δ1(x), for some d ∈ |M|, and
– M, µ |= γ(x) iff M, µdx |= γ1(x), for all d ∈ |M|. a

A useful assumption about models is that they interpret Skolem function
symbols in the right way. This is captured in the following definition.

Definition 3.26 (Canonical Model)
A model M is canonical if for all assignments µ it is the case that M, µ |= δ

implies M, µ |= δ1. a

Theorem 3.27 (Existence of Canonical Model)
Let Γ be a root sequent and let M be a model such that M |= Γ . Then, there is a
canonical model M∗ such that M∗ |= Γ . a
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Proof. Let the rank of a δ-formula A be the number of δ-formulas B such that
B� A, plus one, and let the rank of a Skolem function symbol fi be the rank
of the δ-formula with index i. Say that a model M is canonical up to n if for all
formulas δ of rank at most n and all assignments µ, it is the case that M, µ |= δ

implies M, µ |= δ1. Construct a sequence of models M0,M1, . . ., such that for
each n, Mn is canonical up to n. The model Mn differs from Mn−1 only with
respect to the interpretation of Skolem function symbols of rank n. Initially,
let M0 be M. The model M0 is trivially canonical up to 0, because there are
no δ-formulas of rank 0. Suppose that Mn is already constructed and that Mn

is canonical up to n. Let Mn+1 be the model that coincides with Mn on all
function and relation symbols except for Skolem function symbols of rank
n+ 1, which are interpreted as follows. Let fi be a Skolem function symbol of
rank n+ 1 and arity m. Let δ(x) be the formula with index i, and suppose that
~u = u1, . . . , um are all the instantiation variables occurring in δ. Let ai ∈ |M| for
i = 1, . . . ,m, and let µ be an assignment such that µ(ui) = ai, for i = 1, . . . ,m.
If M, µ |= δ(x), then there is some d ∈ |M| such that M, µdx |= δ1(x). In that
case, let fMn+1

i (a1, . . . , an) = d, otherwise let fMn+1

i (a1, . . . , an) = d for some
arbitrary d ∈ |M|. By construction, Mn+1 is canonical up to n+ 1. Finally, let
M∗ be the model Mk, where k is the maximal possible rank. (Because Γ is
assumed to be finite, there must be some δ-formula of maximal rank.) Because
M∗ is canonical up to k, it is canonical, and M∗ |= Γ , because Γ contains no
Skolem function symbols. QED

Assumption. Because of Theorem 3.27, all models may be assumed canonical. See
[BHS93] for a proof of the existence of canonical models with the δ++-rule. The δ++-
rules introduces the same Skolem function symbol for all δ-formulas identical up to
variable renaming and is more liberal than the δ+-rule.
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3.9 Soundness and Completeness

The basic variable-sharing calculus is sound and complete.

Lemma 3.28 (Countermodel Preservation)
Let M be a countermodel for the root sequent of a derivation, and let τ be a
substitution such that the support of τ contains all variables in D. Then, there
is a leaf sequent Γ such that M |= Γτ. a

Proof. By induction on the construction of D. QED

Theorem 3.29 (Soundness of the Basic Variable-Sharing Calculus)
A provable sequent is valid. a

Proof. Let 〈D, τ〉 be a proof of Γ . Suppose without loss of generality that τ is
ground and that the support of τ contains all variables in D. Suppose for a
contradiction that there is a countermodel M such that M |= Γ . By Lemma 3.28,
there is a leaf sequent Γ ′ such that M |= Γ ′τ. This is impossible, because τ
closes Γ ′. QED

Theorem 3.30 (Completeness of the Basic Variable-Sharing Calculus)
A valid sequent is provable. a

Proof. If a sequent is not provable, then a countermodel for the sequent
may be constructed. The proof is standard; see, for example, [Gal86, Fit96,
Häh01]. QED
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Variable Splitting

The underlying technical idea of variable splitting is to identify and label
variables differently when they are independent from each other. Several of
the advantages of this is mentioned in Section 1.2. A general approach and a
good starting point, as done in [AW07a] and [AW07b], is to assign a unique
name to each branch of a derivation and to label the variables occurring in a
leaf sequent of a branch with this name, allowing substitutions to be applied
branchwise. For instance, if the variable u occurs in the leaf sequents of the
branches B1, B2, . . . , and Bn, then the variables uB1 , uB2 , . . . , and uBn may be
obtained in this way.

Γ

B1 B2 · · · Bn

With no further restrictions, this results in an unsound calculus, so measures
must be taken to ensure that the calculus remains sound. This will be done
with the notion of an admissibility condition, and a guiding intuition is that this
admissibility condition guarantees the existence of a variable-pure proof.

4.1 Introductory Examples

The following examples serve as an informal introduction to the method of
variable splitting. All notions are properly defined in the following sections.
The first example shows the advantage of variable splitting on a derivation of
a valid sequent. The second example shows that a simple projection of labels
onto variables, without any further conditions, provides too much freedom
and is unsound. The final example shows a derivation of a valid sequent,
where it is desirable to employ a form of variable splitting, but where it is
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not immediately clear whether it is sound to do so. Further discussion of this
question is postponed until Section 6.2. All examples should be read with the
correspondence to variable-pure proofs in mind.

Example 4.1 (Valid Sequent)
The root sequent of the following derivation, which is the same as in Exam-
ple 2.6, is valid. The indices 1 and 2, inherited from the expanded β-formula,
individuate the two branches and are used to label the variables in the leaf
sequents, resulting in what are called colored variables.

u1/a

1

Pu ` Pa

u2/b

2

Pu ` Pb

Pu ` Pa∧ Pb

∀x
u
Px ` Pa

1
∧ Pb

2

A substitution on colored variables is called a splitting substitution. The splitting
substitution σ = {u1/a, u2/b} is closing for both branches. Observe that a
variable-pure proof of the sequent may be obtained by expanding the exact
same formulas, but in a different order. �

Example 4.2 (Invalid Sequent)
The root sequent of the following derivation is not valid. However, the splitting
substitution {u1/a, u2/b} closes the derivation.

u1/a

1

Pu ` Pa,Qb

u2/b

2

Qu ` Pa,Qb

Pu∨Qu ` Pa,Qb

∀x
u

(Px
1

∨Qx
2

) ` Pa,Qb

> ⊥

Pb Pa

Qa Qb

A countermodel for the root sequent is a term model M with domain {a, b} as
specified to the right of the derivation. (Recall that in term models, tM = t for
all ground terms t.) It should obviously not be possible to have variable-pure
proofs of the sequent, and this is exactly what the notion of admissibility
guarantees. �

Example 4.3 (Valid Sequent (less obvious))
The root sequent of the following derivation is valid, and the derivation is
closable by the splitting substitution {u1/a, u2/b}.
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4.2. Branch Names

u1/a

1

Pu ` Pa

u2/b

2

Pu ` Pb

Pu ` Pa∧ Pb

` Pu→ Pa∧ Pb

` ∃x
u

(Px→ Pa
1

∧ Pb
2

)

It is not immediately clear whether this should be allowed as a variable-
splitting proof. The γ-formula is only expanded once, yet the derivation is
closable, and any proof of the sequent in a ground or variable-pure calculus
must necessarily expand the γ-formula twice. With the most basic notions of
admissibility, this is not a proof, but in Section 6.2, a less trivial admissibility
condition is defined that allows this as a proof. �

4.2 Branch Names

The labelling of variables makes it possible to assign values to variables
relative to the branches in which they occur, and a variable may thus receive
a particular value in one branch and a different value in another. The most
straightforward way of labelling variables is to label a variable with a name
of the branch in which it occurs, and it is natural to use sets of β0-indices for
this purpose. Sequents in derivations are associated with sets of β0-indices in
the following way.

Definition 4.4 (Branch Name)
The branch names associated with the sequents in a derivation are sets of
β0-indices inductively defined as follows. Initially, associate the empty set
with the root sequent. If B is the branch name associated with the conclusion
of an inference of type α, γ, or δ, then let B be the branch name associated
with the premiss. If B is a branch name associated with the conclusion of a
β-inference, and β1 and β2 are the indices of the introduced formulas, then
associate B ∪ {β1} and B ∪ {β2} with the respective premisses. If B is a branch
name associated with a sequent Γ , then B is also considered the branch name
associated with the formula occurrences and the variable occurrences in Γ . The
branch name B is called the branch name for Γ , the branch name for the formulas
and variables in Γ , and a branch name for the derivation. A β0-index in a
branch name for a derivation is called a β0-index for the derivation. Equivalently,
a β0-index for a derivation is the index of a β0-formula that occurs in the
derivation. (The β0-formula itself does not have to be expanded). a
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Technical Remark. There is a distinction between a branch, which is a branch of
sequents in a derivation, and a branch name, which is a set of β0-indices. It is
convenient to think of branch names as names that refer to branches. A branch
of a derivation is maximal in the sense that it contains exactly the root sequent,
a leaf sequent, and all the sequents in between. Branch names, however, may
also refer to partial branches of a derivation. Only the maximal branch names
refer to the actual branches of a derivation.

Notation. Branch names are in examples written as sequences of natural
numbers. Because no more than ten indices are explicated, this does not cause
any ambiguity. For example, the branch name

{1, 3, 5}

is denoted by
135.

The empty branch name is denoted by ∅. In examples, branches are labelled
with branch names above the leaf sequents for easy reference.

Example 4.5 (Branch Names)
In the following derivation, each sequent is labelled with the branch name for
the sequent.

15

Pa ` Qa
16

Pa ` Qb
1

Pa ` Qa∧Qb

23

Pb ` Qa∧Qb

245

Pc ` Qa
246

Pc ` Qb
24

Pc ` Qa∧Qb

2

Pb∨ Pc ` Qa∧Qb

∅
Pa
1

∨ (Pb
3

∨
2
Pc
4

) ` Qa
5

∧Qb
6

There are no other branch names for this derivation than the ones given above
the sequents. Notice that the branch name for a leaf sequent is simply the set
of indices of the β0-formulas in the branch. �
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Example 4.6 (Alternative Definitions of Branch Names)
A derivation is defined as the result of repeated applications of derivation
rules, so it is natural to define branch names, and the associations with
sequents, inductively, from below, as in Definition 4.4. But there are also other
ways of defining branch names and associations. For instance, the name of
a branch, possibly partial, may simply be defined as the set of β0-indices
of the formulas in the branch. If branch names are only defined for actual
branches of a derivation, and partial branches are avoided in the definition, a
sequent may instead be associated with the intersection of the names of the
branches containing it. If Γ is the sequent, and B is the intersection of all the
names C1, C2, . . . , Cn of all the branches containing Γ , then B is the branch
name associated with Γ and its formula and variable occurrences. This may
be illustrated as follows.

Γ

B

C1 C2 · · · Cn

A somewhat more technical way of defining the branch name associated with
a sequent is to take the set of β0-indices of the formulas that are �-smaller
than, or equal to, the formulas in the sequent. This also gives an equivalent
definition of branch names. �

4.3 Colored Variables

Because the terms label and labelled are already used in several other contexts,
like labelled deductive systems [Gab96, Vig00] and prefixed tableaux [Fit83], the
terms color and colored are used in the context of labelling variables.

Definition 4.7 (Colored Variable)
A colored variable is a pair consisting of a variable u and a set B of β0-indices for
a derivation, written uB. A colored formula and a colored sequent is a formula and
a sequent where all instantiation variables have been replaced with colored

variables. If is an object containing variables, then ̂B denotes the result of
replacing all variables u in with uB. It is informally called the coloring of

45
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with B. A shorthand notation for Γ̂B, when B is the branch name associated
with Γ in a derivation, is simply Γ̂ . (Recall from Definition 4.4 that each sequent
Γ in a derivation is associated with a unique branch name, called the branch
name for Γ .) A colored variable in Γ̂ is called a colored variable for Γ and a colored
variable for the derivation. If u is a variable in the leaf sequent of a branch B of a
derivation, then uB is called a leaf-colored variable for the derivation. a

Technical Remark. The reason for not defining colored variables more strictly,
for instance by only defining colored variables for a derivation, is that there
are several other interesting ways of coloring variables. Informally, a coloring
mechanism refers to a systematic way of coloring variables. The first coloring
mechanism under consideration is thus based on branch names. Alternative
coloring mechanisms are investigated in Sections 8.3–8.5.

Example 4.8 (Branch Names & Colored Variables)
The leftmost of the following derivations has two branches, 2 and 3. After
expanding the β-formula Pb∧ Pc, the rightmost derivation is obtained, with
branches 2, 34, and 35.

2

Pu ` Pa

3

Pu ` Pb∧ Pc

Pu ` Pa∧ (Pb∧ Pc)

∀x
u
Px ` Pa

2
∧
1

(Pb
4

∧
3
Pc
5

)

2

Pu ` Pa

34

Pu ` Pb

35

Pu ` Pc

Pu ` Pb∧ Pc

Pu ` Pa∧ (Pb∧ Pc)

∀x
u
Px ` Pa

2
∧
1

(Pb
4

∧
3
Pc
5

)

When the branch names for the leaf sequents of the leftmost derivation
are propagated onto the variables, the leaf-colored variables u2 and u3 are
obtained. There is a colored variable u∅, whose branch name is the empty
set, but this is not a leaf-colored variable. The leaf-colored variables for the
rightmost derivation are u2, u34, and u35. Although u3 is still a colored
variable for this derivation, it is no longer a leaf-colored variable. If Γ is the
leaf sequent of branch 34, then Γ̂ denotes Pu34 ` Pb. �
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4.4 Colored Terms and Splitting Substitutions

From now on there are two types of variables at play: uncolored and colored
variables. The terminology for uncolored variables is kept unchanged, and
corresponding notions for colored variables are defined as follows.

Definition 4.9 (Colored Term)
The set of colored terms, for a given set of colored variables, is the least set that
contains the set of colored variables and that is closed under function and
Skolem function symbols. A colored term is ground if it does not contain any
colored variables. a

Thus, ground colored terms coincide with ground uncolored terms. Note that
colored variables are only defined relative to a given derivation, and that
the set of leaf-colored variables is extended with every γ-rule application and
changed with every β-rule application.

Definition 4.10 (Splitting Substitution)
A splitting substitution for a derivation is a function from the set of leaf-colored
variables to the set of colored terms defined from this set. The domain of
a splitting substitution is extended to colored terms and formulas in the
standard way. The support of a splitting substitution σ is the set of colored
variables uB such that σ(uB) 6= uB. If σ(uB) is ground for all uB in the support
of σ, then σ is called ground. If σ is ground and the support of σ is the set of all
leaf-colored variables, then σ is called total. If σ is ground, but not necessarily
total, then it is called partial. (Strictly speaking, there is no difference between
ground and partial splitting substitutions, but it is more natural to call them
partial when the support does not consist of all leaf-colored variables.) a

Definition 4.11 (Unifier of Colored Terms and Formulas)
A splitting substitution σ is a unifier of two colored terms ŝ and t̂ if ŝσ = t̂σ

and of two colored formulas F̂ and Ĝ of opposite polarity if F̂σ equals Ĝσ up
to indices and polarities. In this case, σ unifies F̂ and Ĝ. Two colored terms or
formulas are unifiable if there exists a unifier of them. a

Definition 4.12 (Closing Splitting Substitution)
A splitting substitution σ closes a leaf sequent Γ of a derivation if there is a pair
of colored atomic formulas in Γ̂ that are unified by σ. A splitting substitution
is closing for a derivation if it closes every leaf sequent. a

Example 4.13 (Splitting Substitution)
The splitting substitution {u2/a, u34/b, u35/c} closes the rightmost derivation
in Example 4.8 in the following way.
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u2/a

2

Pu ` Pa

u34/b

34

Pu ` Pb

u35/c

35

Pu ` Pc

Pu ` Pb∧ Pc

Pu ` Pa∧ (Pb∧ Pc)

∀x
u
Px ` Pa

2
∧
1

(Pb
4

∧
3
Pc
5

)

As usual, the relevant parts of the closing splitting substitution are displayed
above the leaf sequents. �

4.5 A Variable-Pure Calculus with Colored Variables

Recall that a calculus is variable-pure if every γ-rule application introduces a
fresh free variable, giving rise to variable-pure derivations. By means of formulas
with colored variables, it is possible to define a variable-pure calculus with
colored variables as follows. To ensure that the variable introduced by a γ-
formula is fresh, a γ-formula may introduce a colored variable directly such
that the colored variable is not altered in any way after it is introduced (instead
of introducing a variable and coloring it with a branch name afterwards, as is
done for variable splitting). For each γ-rule application expanding a γ-formula
with index u in a branch B, let uB be the colored variable that is introduced.
By coloring the variable with the name of the branch in this way, the colored
variable is guaranteed to be fresh. The γ-rule for variable-pure derivations
may be summarized as follows.

Γ, γ ′, γ1(u
B)

Γ, γ(x)

(u is the index of γ and B is the branch name associated with the conclusion.)

A variable-pure derivation is a derivation obtained by replacing the ordinary
γ-rule with the modified γ-rule. A variable-pure substitution is a function σ from
the set of colored variables for a variable-pure derivation to the corresponding
set of colored terms. If D is a variable-pure derivation of Γ and σ is a closing
variable-pure substitution for D, then the pair 〈D,σ〉 is a variable-pure proof, or
VP-proof, of Γ . The resulting calculus is denoted by VP. For the record, VP is
both sound and complete. (Note that there are no restrictions on variable-pure
substitutions; they may be partial and even nonground.)
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Theorem 4.14 (Soundness of VP)
A VP-provable sequent is valid. a

Proof. Like the proof of the Soundness Theorem (3.29) for the basic variable-
sharing calculus. QED

Theorem 4.15 (Completeness of VP)
A valid sequent is VP-provable. a

Proof. Like the proof of the Completeness Theorem (3.30) for the basic
variable-sharing calculus. QED

The variable-pure calculus is very convenient for establishing soundness and
completeness of other calculi, because it is possible to transform a proof
either into or from a variable-pure proof. The following definition gives an
equivalent way of obtaining a variable-pure derivation from an ordinary
derivation, which is more abstract and also easier to use.

Definition 4.16 (Variable-Pure Coloring Mechanism)
If Γ is a sequent in a derivation, let Γ̂vp be the result of replacing every variable
occurrence of u in Γ with uB, where B is the branch name associated with the
lowermost occurrence of u in the branch in which Γ occurs. If D is a derivation,
then the result of replacing each sequent Γ in D with Γ̂vp is denoted by D̂vp

and referred to as the corresponding variable-pure derivation. a

Example 4.17 (Variable-Pure Derivation)
The following derivation is closed by the splitting substitution given above
the leaf sequents.

u13/a

13

Pu ` Pa,Qa

u23/a

23

Qu ` Pa,Qa

Pu∨Qu ` Pa,Qa

Pu∨Qu ` Pa∨Qa

∀x(Px∨Qx) ` Pa∨Qa

u14/b

14

Pu ` Pb,Qb

u24/b

24

Qu ` Pb,Qb

Pu∨Qu ` Pb,Qb

Pu∨Qu ` Pb∨Qb

∀x(Px∨Qx) ` Pb∨Qb

∀x
u

(Px
1

∨Qx
2

) ` (Pa∨
3
Qa) ∧ (Pb∨

4
Qb)

The following is the corresponding variable-pure derivation, where each
sequent Γ has been replaced with Γ̂vp. A closing variable-pure substitution is
given above the leaf sequents.
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u3/a

13

Pu3 ` Pa,Qa

u3/a

23

Qu3 ` Pa,Qa

Pu3 ∨Qu3 ` Pa,Qa

Pu3 ∨Qu3 ` Pa∨Qa

∀x(Px∨Qx) ` Pa∨Qa

u4/b

14

Pu4 ` Pb,Qb

u4/b

24

Qu4 ` Pb,Qb

Pu4 ∨Qu4 ` Pb,Qb

Pu4 ∨Qu4 ` Pb∨Qb

∀x(Px∨Qx) ` Pb∨Qb

∀x
u

(Px
1

∨Qx
2

) ` (Pa∨
3
Qa) ∧ (Pb∨

4
Qb)

If D denotes the first derivation, then D̂vp denotes the second derivation. �

4.6 Reasoning about Variable Splitting

The next two sections introduce the basics for reasoning about variable split-
ting and defining provability. A splitting substitution that is closing for a
derivation is in itself insufficient for defining provability in a consistent way.
Most of the various definitions of variable-splitting provability to be presented
are in terms of closing splitting substitutions that satisfy certain admissibility
conditions. These conditions are formulated in terms of reduction orderings
that capture the essential logical dependencies between the formulas and
inferences in a derivation, and the essential property that a reduction ordering
must satisfy to have a variable-splitting proof is that of irreflexivity. For the
simplest notions of admissibility, irreflexivity guarantees the existence of a
variable-pure proof.

There are several admissibility conditions for variable splitting, some that
are sound and some that are not, and each of them gives rise to a notion of
variable-splitting provability. The basic variable-sharing calculus is common
for all of the different notions of admissibility and provability. There are two
main ingredients to a notion of variable-splitting provability. The first is the
underlying relation on formulas, for example the �-relation. The second is
the set of conditions placed on splitting substitutions, for instance whether
partial splitting substitutions are allowed. For the remainder of this chapter
only total splitting substitutions are considered, and the underlying relation
on formulas is assumed to be the �-relation. In Chapter 6, other calculi are
discussed. In Section 8.3, calculi that result from changing the way variables
are colored are discussed. For example, instead of using a branch name, it is
possible to use a subset of the branch name. For now, only branch names are
considered.
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4.7 Duality

Recall that the formulas β1 and β2 of a β-formula, as in Definition 3.3, are
called dual. Because the notion of duality is very important for variable
splitting, the definition is repeated together with a designated notation for
dual formulas.

Definition 4.18 (Dual)
If β1 and β2 are the immediate subformulas of a β-formula β, then β1 and
β2 are called dual and β is denoted by (β1 4 β2). (Immediate subformulas
here means that β�1 β1 and β�1 β2, where β1 is not equal to β2.) A set of
formulas (or equivalently, indices) is called dual-free if it does not contain dual
elements. a

Because β- and β0-formulas play such an important role, the following notions
are also very useful.

Definition 4.19 (β-formula for a derivation)
A β-formula that is expanded in a derivation is called a β-formula for the
derivation, and the immediate subformulas are called β0-formulas for the deriva-
tion. Note that a β0-formula for a derivation is not necessarily expanded,
unlike a β-formula for a derivation. The restriction of � to the β-formulas for
a derivation is denoted by �β, and the restriction of � to the β0-formulas for
a derivation is denoted by �β0

. a

4.8 Splitting Relations

The next definition is perhaps the most central definition for the variable-
splitting method.

Definition 4.20 (Splitting Relation)
Let σ be a ground splitting substitution for a derivation. A binary relation @
from β-indices to variables is called a splitting relation for σ if the following
condition holds for colored variables uB and uC in the support of σ: If σ(uB) 6=
σ(uC), then there are dual elements b ∈ B and c ∈ C such that (b4 c) @ u. a

Technical Remark. Splitting relations are only defined for ground splitting
substitutions. This is because the case for nonground splitting substitutions is
nontrivial. A discussion of this may be found in Section 8.2.

Intuitively, (b4 c) @ u must be the case if the variable u has been colored in
two different ways made possible by (b4 c) and given two different values
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under σ. The natural way to read (b4 c) @ u is u depends on (b4 c) or u is
split by (b4 c).

Notation. When splitting relations are given, the notation

{(14 2) @ u, (34 4) @ u}

is used, instead of listing the pairs, like in

{〈(14 2), u〉, 〈(34 4), u〉}.

Example 4.21 (Splitting Relation)
A splitting relation for the splitting substitution σ = {u2/a, u34/b, u35/c} from
Example 4.13 is {(24 3) @ u, (44 5) @ u}.

a = σ(u2) 6= σ(u34) = b requires @ to satisfy (24 3) @ u.

– a = σ(u2) 6= σ(u35) = c requires @ to satisfy (24 3) @ u.

– b = σ(u34) 6= σ(u35) = c requires @ to satisfy (44 5) @ u.

Because there are no other β-indices or variables, this is the only splitting
relation for σ. �

Technical Remark. For a given splitting substitution σ there may be several
different splitting relations, even if they are assumed to be minimal. For
example, if (14 2) and (34 4) are β-indices and σ(u13) 6= σ(u24), then only
one of (14 2) @ u and (34 4) @ u is necessary for @ to be a splitting relation
for σ.

There is a clear proof-theoretical motivation behind the definition of a splitting
relation. A splitting relation may be interpreted as an order constraint on
rule applications in variable-pure calculi. Intuitively, if σ(u1) 6= σ(u2) and the
splitting relation satisfies (14 2) @ u, then it may be taken as a constraint
requiring (14 2) to be expanded below u in a variable-pure derivation. The
γ-formula u will then be expanded in different branches, making it possible
to introduce fresh and different variables for the two instances. Because these
variables are different, they may be instantiated differently.

It is instructive to think about splitting relations as providing witnesses that
justify the assignment of different values to the different occurrences of a
variable. For example, if u1 and u2 are given different values, then a splitting
relation must satisfy (14 2) @ u, where (14 2) is the witness.
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Be aware that a @ u does not imply that there are colored variables uB and uC

that are assigned different values. This is only the case if the splitting relation
is minimal in the sense that if an element were to be removed, then it would
no longer be a splitting relation.

Notation. Splitting relations are displayed in diagrams with arrows, like the
other relations on indices. The following arrow between β and γ represents
the fact that β @ γ.

β γ

4.9 Transformations into Variable-Pure Proofs

The basic idea for defining an admissibility condition is the following. Suppose
that a derivation and a closing splitting substitution is given. A splitting
relation @ for the splitting substitution induces a reduction ordering, namely
the transitive closure of (� ∪ @). When this reduction ordering is irreflexive,
it is possible to transform the derivation into a variable-pure proof of the same
root sequent in a two-step process. First, by the Permutation Theorem (3.23),
a permutation of the derivation that conforms to the reduction ordering is
obtained. Second, if every γ-inference of the conforming derivation is changed
such that it introduces a fresh free variable, then the result is a variable-pure
proof of the same root sequent.

Example 4.22 (Transformation into a Variable-Pure Derivation)
Consider again the derivation from Example 4.13 and the splitting relation
{(24 3) @ u, (44 5) @ u} from Example 4.21. The induced reduction ordering
may be used as a basis for constructing the corresponding variable-pure
derivation. A diagram of the relations between the indices is displayed to the
right of the original derivation.

u2/a

2

Pu ` Pa

u34/b

34

Pu ` Pb

u35/c

35

Pu ` Pc

Pu ` Pb∧ Pc

Pu ` Pa∧ (Pb∧ Pc)

∀x
u
Px ` Pa

2
∧
1

(Pb
4

∧
3
Pc
5

)
(24 3) u

(44 5)
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Let C be the reduction ordering obtained by taking transitive closure of
(� ∪ @). Because C is irreflexive, by the Permutation Theorem (3.23), there is
a permutation of the derivation that conforms to C. This permutation may be
obtained directly if, starting with the root sequent, the formulas are expanded
in accordance with the reduction ordering, making sure that whenever aC b,
then a is not expanded above b. In this way, the following derivation is
obtained.

2

Pu ` Pa

∀xPx ` Pa

34

Pu ` Pb

∀xPx ` Pb

35

Pu ` Pc

∀xPx ` Pc

∀xPx ` Pb∧ Pc

∀x
u
Px ` Pa

2
∧
1

(Pb
4

∧
3
Pc
5

)

This derivation may now be mapped to the following variable-pure derivation
by making sure that every γ-rule application introduces a colored variable uB

when it is applied to a formula with index u in a branch B.

u2/a

2

Pu2 ` Pa

∀xPx ` Pa

u34/b

34

Pu34 ` Pb

∀xPx ` Pb

u35/c

35

Pu35 ` Pc

∀xPx ` Pc

∀xPx ` Pb∧ Pc

∀x
u
Px ` Pa

2
∧
1

(Pb
4

∧
3
Pc
5

)

The leaf-colored variables from the initial derivation are the same as the
colored variables in the variable-pure derivation, and the splitting substitution
{u2/a, u34/b, u35/c} is also a closing variable-pure substitution. In general,
this is not the case, but a closing variable-pure substitution may always be
constructed from a closing splitting substitution. Transformations of this kind
are the basis for one of the proofs of the Soundness Theorem (5.10) that are
presented in Chapter 5. �

Technical Remark. Transformations into a ground calculus are possible as well,
although liberalized δ-rules make such transformations less straightforward. It
seems necessary to unwind proofs to obtain ground proofs.
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Example 4.23 (Cyclic Reduction Ordering)
A splitting relation for the substitution {u1/a, u2/b} from Example 4.2 is
{(14 2) @ u}. However, because u� (14 2), the induced reduction ordering
is not irreflexive. The derivation and a diagram of the relations between the
indices are as follows.

u1/a

1

Pu ` Pa,Qb

u2/b

2

Qu ` Pa,Qb

Pu∨Qu ` Pa,Qb

∀x
u

(Px
1

∨Qx
2

) ` Pa,Qb u

(14 2)

Because the reduction ordering is cyclic, it is not possible to transform the
derivation into a corresponding variable-pure proof. �

4.10 Admissibility and Provability

The notion of a splitting relation makes it possible to define admissibility
conditions for variable splitting.

Definition 4.24 (�-admissibility)
A splitting relation @ is�-admissible if the transitive closure of (� ∪ @), called
the reduction ordering induced by� and @, is irreflexive. A splitting substitution
σ is �-admissible if there is a �-admissible splitting relation for it. a

Technical Remark. Because splitting relations are defined only for ground
splitting substitutions, this is also the case for �-admissibility.

Definition 4.25 (VS(�)-provability)
If D is a derivation of Γ and σ is a total, closing and �-admissible splitting
substitution for D, then the pair 〈D,σ〉 is a VS(�)-proof of Γ . The resulting
calculus is denoted by VS(�). a

This is one of the simplest possible calculi with variable splitting. If the notion
of an admissible splitting substitution is changed, for example by changing the
underlying notion of a reduction ordering, by relaxing the totality condition,
or by changing the underlying coloring mechanism, then another calculus is
obtained. All these possibilities are investigated in this thesis.
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4.11 Examples

Example 4.26 (VS(�)-provability)
The derivation and splitting substitution from Example 4.22 is a VS(�)-proof.
The derivation and splitting substitution from Example 4.23 is not a VS(�)-
proof, because the reduction ordering is not irreflexive, and neither is the
derivation and splitting substitution from Example 4.3, for the same reason.
In this case, however, the root sequent is valid. �

The following example is in essence equivalent to the original counterexample
from [Ant04] that established the inconsistency of [WA03].

Notation. To indicate the relevant unifiable formulas in a leaf sequent of a
derivation, the following overline notation is used.

Pa, Pb ` Pu

Example 4.27 (Mutual Splitting - Version 1)
The root sequent of the following derivation is not valid.

u13/a

13

Pu, Sa ` Pa, Rv

Pu, Sa ` Pa∨ Rv

Pu∧ Sa ` Pa∨ Rv

v14/a

14

Pu, Sa ` Qb, Sv

Pu, Sa ` Qb∨ Sv

Pu∧ Sa ` Qb∨ Sv

Pu∧ Sa ` (Pa∨ Rv) ∧ (Qb∨ Sv)

v23/b

23

Qu, Rb ` Pa, Rv

Qu, Rb ` Pa∨ Rv

Qu∧ Rb ` Pa∨ Rv

u24/b

24

Qu, Rb ` Qb, Sv

Qu, Rb ` Qb∨ Sv

Qu∧ Rb ` Qb∨ Sv

Qu∧ Rb ` (Pa∨ Rv) ∧ (Qb∨ Sv)

(Pu∧ Sa) ∨ (Qu∧ Rb) ` (Pa∨ Rv) ∧ (Qb∨ Sv)

(Pu∧ Sa) ∨ (Qu∧ Rb) ` ∃x((Pa∨ Rx) ∧ (Qb∨ Sx))

∀x
u

((Px∧ Sa)
1

∨ (Qx∧ Rb)
2

) ` ∃x
v

((Pa∨ Rx)
3

∧ (Qb∨ Sx)
4

)

A countermodel is a term model M with domain {a, b} specified as follows.

> ⊥

Pb Pa

Qa Qb

Rb Ra

Sa Sb
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The closing splitting substitution {u13/a, u24/b, v14/a, v23/b} is given above
the leaf sequents, but there is no admissible splitting relation for it for the
following reasons.

– Because a = u13 6= u24 = b, the splitting relation must either satisfy
(1 4 2) @ u or (3 4 4) @ u. The former is not �-admissible, because
u� (14 2), so suppose that (34 4) @ u.

– Because a = v14 6= v23 = b, the splitting relation must either satisfy
(1 4 2) @ v or (3 4 4) @ v. The latter is not �-admissible, because
v� (34 4), so suppose that (14 2) @ v.

The splitting relation {(344) @ u, (142) @ v} is given in the following diagram.

u

(14 2)

v

(34 4)

The induced reduction ordering is not irreflexive, which may be verified by
the fact that there is a cycle in the diagram. Consequently, there is no �-
admissible splitting relation, and the splitting substitution does not yield a
proof. �

The following example is a variant of the previous example. In comparison,
the root sequent in this example is much simpler than in the previous, but the
closing substitution is more complex.

Example 4.28 (Mutual Splitting - Version 2)
The root sequent of the following derivation is not valid. A countermodel is a
term model M with domain {a, b} specified as follows.

> ⊥

Paa Pab

Pbb Pba

A closing splitting substitution is given above the leaf sequents.
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u13/a

v13/a

13

Pua ` Pav

u14/b

v14/a

14

Pua ` Pbv
Pua ` Pav∧ Pbv

u23/a

v23/b

23

Pub ` Pav

u24/b

v24/b

24

Pub ` Pbv
Pub ` Pav∧ Pbv

Pua∨ Pub ` Pav∧ Pbv

Pua∨ Pub ` ∃x(Pax∧ Pbx)

∀x
u

(Pxa
1

∨ Pxb
2

) ` ∃x
v

(Pax
3

∧ Pbx
4

)

The splitting substitution gives rise to the splitting relation {(344) @ u, (142) @
v} for the following reasons.

– Because a = u13 6= u14 = b, the splitting relation must satisfy (34 4) @ u.

– Because a = u23 6= u24 = b, the splitting relation must satisfy (34 4) @ u.

– Because a = v13 6= v23 = b, the splitting relation must satisfy (14 2) @ v.

– Because a = v14 6= v24 = b, the splitting relation must satisfy (14 2) @ v.

– Because a = u13 6= u24 = b, the splitting relation must satisfy either
(14 2) @ u or (34 4) @ u.

– Because a = u23 6= u14 = b, the splitting relation must satisfy either
(14 2) @ u or (34 4) @ u.

– Because a = v13 6= v24 = b, the splitting relation must satisfy either
(14 2) @ v or (34 4) @ v.

– Because a = v14 6= v23 = b, the splitting relation must satisfy either
(14 2) @ v or (34 4) @ v.

These comparisons may be illustrated as follows, showing which coloring
variables are compared to which.

u13/a
u23/a

u14/b
u24/b

v13/a
v14/a

v23/b
v24/b

(34 4) @ u

(14 2) @ v

The resulting splitting relation is identical to the one in Example 4.27, which
is not �-admissible. �
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4.12 Proof Complexity of VS(�)

This section contains a brief comparison of proof complexity in terms of
minimal proof size for VS(�), the simplest variable-splitting calculus, and VP,
the variable-pure calculus from Section 4.5. Although minimal proof size may
not be the best way of measuring the possibilities for efficient proof search (for
this purpose a measure of search space complexity may be better), it clearly
shows some of the advantages of variable splitting.

Definition 4.29 (Size of Derivation)
The size of a derivation is the number of branches in it. a

The number of expanded γ-formulas is not a good measure of proof size for
variable splitting, because one expanded γ-formula may give rise to arbitrarily
many different colored variables. Alternatively, the size of a derivation may
be defined as the number of inferences in the derivation, or the sum of the
sizes of all the formulas in the derivations.

Definition 4.30 (Polynomial Simulation)
A calculus V1 polynomially simulates a calculus V2 if there is a polynomial p
such that for every V2-proof of a sequent Γ of size n, there is a V1-proof of Γ
of size at most p(n). a

Theorem 4.31 (Polynomial Simulation of VP)
VS(�) polynomially simulates VP. a

Proof. By the proof of the Completeness Theorem (5.11), completeness for
VS(�), a VP-proof may be mapped to a VS(�)-proof of the exact same shape
and size. QED

The second proof of the Soundness Theorem (5.10) for VS(�) is based on the
transformation of a variable-splitting proof into a variable-pure proof of the
same sequent. This transformation, in contrast to the transformation from a
variable-pure proof into a variable-splitting proof, may increase the size of a
proof exponentially with respect to the size of the root sequent. The increase
in proof size is caused by permuting the derivation such that it becomes
conforming.

Example 4.32 (Comparison of Proof Size)
The following is a VS(�)-proof of the sequent

∀xPx, ∀x(Pa∧ Pb→ Qx) ` Qa∧Qb.
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4. Variable Splitting

u13/a

13

Pu ` Pa,Qa∧Qb

u14/b

14

Pu ` Pb,Qa∧Qb

Pu ` Pa∧ Pb,Qa∧Qb

v25/a

25

Qv ` Qa

v26/b

26

Qv ` Qb

Qv ` Qa∧Qb

Pu, Pa∧ Pb→ Qv ` Qa∧Qb

Pu, ∀x(Pa∧ Pb→ Qx) ` Qa∧Qb

∀x
u
Px, ∀x

v
(Pa
3

∧
1
Pb
4
→ Qx

2
) ` Qa

5
∧Qb

6

The splitting substitution given above the leaf sequents gives rise to the
splitting relation {(34 4) @ u, (54 6) @ v}, which is shown in the following
diagram.

u v

(14 2)

(34 4) (54 6)

To transform this into a variable-pure proof, along the lines of the second
soundness proof for VS(�), the formulas must be expanded in the order given
by the induced reduction ordering.

(54 6)C vC (14 2)C (34 4)C u

u135/a

135

Pu ` Qa, Pa
u ` Qa, Pa

u145/b

145

Pu ` Qa, Pb
u ` Qa, Pb

u ` Qa, Pa∧ Pb

v25/a

25

Qv, u ` Qa
u, Pa∧ Pb→ Qv ` Qa

u, v ` Qa

u136/a

136

Pu ` Qb, Pa
u ` Qb, Pa

u146/b

146

Pu ` Qb, Pb
u ` Qb, Pb

u ` Qb, Pa∧ Pb

v26/b

26

Qv, u ` Qb
u, Pa∧ Pb→ Qv ` Qb

u, v ` Qb
∀x
u
Px, ∀x

v
(Pa
3

∧
1
Pb
4
→ Qx

2
) ` Qa

5
∧Qb

6

Note that the v-formula needs to be expanded two times, one time for Qa and
one time for Qb. The u-formula needs to be expanded four times, two times
for each expansion of the v-formula. �
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The previous example may be generalized into a proof of the following
theorem.

Theorem 4.33 (Exponential Speedup for VS(�))
VP does not polynomially simulate VS(�). More precisely, there is a set of
valid sequents {Γ1, Γ2, Γ3, . . .} such that vs(n), the size of the smallest VS(�)-
proof of Γn, is Θ(n), and vp(n), the size of the smallest VP-proof of Γn, is
Θ(2n). a

Proof. Let Γn, for n > 1, be the following sequent.

∀x
u0

P1x,
⋃

i=1,...,n−1

{
∀x
ui

(Pia
fi

∧
di

Pib
gi

→
ci

Pi+1x
ei

)

}
` Pna

fn

∧
dn

Pnb
gn

Observe that Γ2 is equivalent to the root sequent from Example 4.32. The
following table gives the branch names, the relevant part of a closing splitting
substitution σ, and a splitting relation for σ.

branch name σ @

d1f1 u0/a (f1 4 g1) @ u0
d1g1 u0/b

e1d2f2 u1/a (f2 4 g2) @ u1
e1d2g2 u1/b

e1e2d3f3 u2/a (f3 4 g3) @ u2
e1e2d3g3 u2/b

...
...

...

e1e2e3 . . . en−1fn un−1/a (fn 4 gn) @ un−1
e1e2e3 . . . en−1gn un−1/b

The table reveals that the smallest VS(�)-proof of Γn has 2n branches. The
�-admissibility of the splitting relation may be verified by the following
diagram of the relations between the formulas.

u0 u1

c1

d1

u2

c2

d2

u3

c3

d3

. . .

un−1

cn−1

dn−1 dn
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On the other hand, the number of branches of the smallest variable-pure proof
of Γn is Θ(2n), because for each formula with index di, where 1 6 i 6 n, two
copies of the formula with index ui−1 is required to close the derivation. The
growth in proof size is given in the following table.

n vs(n) vp(n)

1 2 2 = 2

2 4 2+ 4 = 6

3 6 2+ 4+ 8 = 14

4 8 2+ 4+ 8+ 16 = 30
...

...
...

n vs(n− 1) + 2 2 · vp(n− 1) + 2

= 2n = 2n+1 − 2

For instance, the following trees are outlines of proofs for n = 4. The leftmost
tree represents a VS(�)-proof, and the rightmost tree represents a VP-proof
where the formulas are expanded in an order that conforms to the induced
reduction ordering. The black dots stand for leaf nodes.

u0

u1

u2

u3

d4

d1

d2

d3

u0

u1

u2

u3

d4

d1

d2

d3

The smallest VS(�)-proof of Γn has 2n branches, but this requires the inferences
to be expanded in an optimal order. If the formulas are expanded in an order
that conforms to the induced reduction ordering, then there is no difference
in proof size anymore. It is open whether there is an example where the
VS(�)-proofs are small regardless of the order of formula expansion. QED
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Chapter 5

Soundness and Completeness

There are two typical ways of establishing soundness for tableau or sequent
calculi: either by showing that the inferences of a derivation preserve a coun-
termodel property or by transforming a proof in one calculus into a proof in
another calculus known to be sound.

The most standard method is perhaps the first, which is more semantic in
nature. From the assumption that the root sequent of a derivation has a
countermodel, one usually shows, by induction on the construction of the
derivation, that one of the leaf sequents also has a countermodel. In analytic
calculi this is governed by the subformula relation. Soundness of a calculus
follows from the fact that it is impossible to close all leaf sequents if there is
a leaf sequent with a countermodel. With variable splitting, the situation is
more complex. At first sight, it seems impossible to prove soundness straight-
forwardly in this manner, because leaf sequents may be closed by splitting
substitutions, which are substitutions on colored variables. An obvious diffi-
culty is that variables may be assigned different terms in different branches.
One of the technical contributions in this thesis is how to prove soundness in
this way even when splitting substitutions are allowed. The basic idea is that
it is still possible to prove a countermodel preservation property by induction
on the construction of the derivation, provided that the derivation conforms to a
reduction ordering induced by a�-admissible splitting relation. Starting with the
assumption that the root sequent has a countermodel, it is possible to con-
struct a branch by repeatedly choosing between the immediate subformulas of
β-formulas. From the assumption that a β-formula has a countermodel, it suf-
fices to show that one of the immediate subformulas also has a countermodel.
This crucially depends on the variables occurring in the given β-formula; to
choose one of the subformulas, it is necessary to know the terms assigned to
these variables. The purpose of conformity is to ensure that there is enough
information to do this.

The second method for proving soundness, by proof transformation, which is
purely syntactic, is also facilitated by conformity. A variable-splitting proof
that conforms to a reduction ordering induced by a �-admissible splitting
relation may very elegantly be transformed into a variable-pure proof.
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5. Soundness and Completeness

It should be noted that the resulting soundness proofs for variable splitting,
either by countermodel preservation or proof transformation, are essentially
equivalent. Whether a countermodel preservation property is proved directly,
or a proof is transformed into a variable-pure proof, and then a countermodel
preservation property is shown, amounts to more or less the same thing.
Nevertheless, the two methods provide different kinds of insights, and both
are included.

It is possible to prove countermodel preservation without the conformity
assumption, and this is postponed until more general terminology is defined
in Chapter 7. The proof itself may be found in Section 7.5 on page 109.

All the soundness proofs for variable splitting that are given in this thesis have
a common core, regardless of the particular proof method and calculus under
consideration, which is based on a systematic way of extending a splitting
substitution to colored variables other than the ones in the support. Such a
partial function from colored variables is called an augmentation of a splitting
substitution and is defined in the following section. More specifically, the
core consists of two properties that augmentations of splitting substitutions
may have, called definedness and persistence. The exact formulations of these
properties for a particular calculus may differ, but they may all be motivated in
terms of countermodel preservation for β-formulas. The definedness property
is that an augmentation is defined for sufficiently many colored variables,
particularly in β-formulas, for countermodels to be preserved. The persistence
property deals with the behaviour of an augmentation on colored variables
when the sets of β0-indices are extended. When uS is given a value by an
augmentation, the value must remain unchanged when S is extended.
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5.1. Augmentations of Splitting Substitutions

5.1 Augmentations of Splitting Substitutions

This section and the next introduce the means necessary for proving soundness
of variable splitting. The first notion is that of an augmentation of a splitting
substitution. A splitting substitution is defined only for the leaf-colored vari-
ables for a derivation, but it is convenient, especially for proving soundness,
to be able to assign terms to colored variables other than leaf-colored ones.
Given a splitting substitution for a derivation, what terms, if any, should be
assigned to the other colored variables for the derivation? The answer is given
with the notion of an augmentation of a splitting substitution.

Consider first, intuitively, what an augmentation should look like. For total
splitting substitutions there is a natural choice. Given a colored variable uB

for a derivation, consider the terms assigned to the leaf-colored variables uC

such that B ⊆ C. If these variables are all assigned the same term, this term is
the obvious choice for uB. It is natural to call uB a determined colored variable.
If C1, . . . , Cn are the leaf-colored variables extending B, this may be illustrated
as follows.

uB

uC1

t

uC2

t

· · · uCn

t

If, however, these colored variables are assigned different ground terms, then
uB is undetermined and should be left undefined by the augmentation. For
total splitting substitutions, this is sufficient for most purposes. The notation
[uB] is introduced next, which, for total splitting substitutions, simply means
the set of leaf-colored variables uC such that B ⊆ C.

The definition of an augmentation must, however, take partial splitting sub-
stitutions into account, and a partial splitting substitution may not have all
leaf-colored variables in its support. It is natural to take [uB] as the set of
leaf-colored variables uC in the support such that B ⊆ C and check if these are
assigned the same ground term. If this is the case, then the value for a colored
variable uB is determined. What should be the domain of an augmentation?
A good choice is the colored variables uB for the derivation such that all
variables in [uB] are assigned the same ground term. A subtle point here is
that [uB] may be the empty set, which happens if there is no leaf-colored
variable uC in the support such that B ⊆ C. In this case, a choice of ground
term must be made. To this end, say that a colored variable uB is determined if
[uB] is nonempty and all colored variables in it are assigned the same ground
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5. Soundness and Completeness

term. The next example explains the underlying intuition for the definition of
an augmentation. The formal definition is given afterwards.

Example 5.1 (Augmentation of a Partial Splitting Substitution)
Suppose that the nodes in the leftmost tree in Figure 5.1 are labelled with the
colored variables for a derivation and that the leaf nodes are labelled with the
leaf-colored variables. The splitting substitution σ = {uC1/a, uD1/a, uE1/b} is
partial with support {uC1 , uD1 , uE1 }. The result of replacing every colored vari-
able uB with [uB] is the rightmost tree. Observe that the sets in the rightmost
tree become smaller as they get closer to the leaves.

uA

uB1

uC1

a

uC2

uC2

uB2

uD1

a

uD2

uD2

uD3

uE1

b

uE2

uE2

{uC1 , uD1 , uE1 }

{uC1 }

{uC1 }

a

∅
?

{uD1 , uE1 }

{uD1 }

a

∅
?

{uE1 }

{uE1 }

b

∅
?

Figure 5.1: The Colored Variables for a Derivation. In the leftmost tree, the
determined colored variables are underlined, and the terms assigned to the
leaf-colored variables by a splitting substitution are given above the leaf nodes.
The rightmost tree is the result of replacing every colored variable uB with
[uB].

The domain of an augmentation σ should at least contain the determined
colored variables, which are underlined in the leftmost tree. The colored
variables uC2 and uE2 are not determined, because [uC2 ] and [uE2 ] are empty,
but their branch names extend branch names of determined colored variables,
and this may be used to assign ground terms to uC2 and uE2 as well. For
instance, uB1 is determined and B1 ⊆ C2, so the augmentation σ should assign
the same ground term to uC2 as to uB1 . Because σ(uB1) = a, it should also be
the case that σ(uC2) = a. Similarly, σ(uE2) = b. The colored variable uD2 is also
not determined, because [uD2 ] is empty, but there is no determined colored
variable uB such that B ⊆ D2. In this case, a fixed default term d may be
assigned to uD2 . Although the three colored variables, uC2 , uD2 , and uE2 are
not determined, they are secured in the sense that it is possible to assign ground
terms to them in a consistent way. This is in contrast to the colored variables
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5.1. Augmentations of Splitting Substitutions

uA and uB2 , which are not determined, but for a stronger reason than the
other colored variables. The sets [uA] and [uB2 ] both contain colored variables
that are assigned different ground terms. For instance, [uB2 ] = {uD1 , uE1 }, and
uD1 and uE1 are assigned different ground terms. The augmentation should
therefore be undefined for uA and uB2 . A summary of the augmentation is
given in the following table.

determined

uB σ(uB)

uB1 a

uC1 a

uD1 a

uD3 b

uE1 b

secured

uB σ(uB)

uC2 a

uD2 d

uE2 b

undefined

uB σ(uB)

uA −

uB2 −

The colored variables in the domain of the augmentation are divided into
determined, secured, and undefined colored variables. �

Definition 5.2 (Augmentation of a Splitting Substitution)
Let σ be a ground splitting substitution for a derivation. If uB is a colored
variable for the derivation, then let [uB] denote the set of colored variables
uC in the support of σ such that B ⊆ C. If [uB]σ contains at most one element,
then uB is said to be a secured colored variable for the derivation, and if [uB]σ

contains exactly one element, then uB is also said to be a determined colored
variable for the derivation. Let σ be a function, called the augmentation of σ,
from the secured colored variables for the derivation to ground terms, defined
as follows. Suppose without loss of generality that there is a constant d in the
codomain of σ.

– If uB is a determined colored variable and [uB]σ = {t}, let σ(uC) = t for
all colored variables uC such that B ⊆ C.

– If uC is a secured colored variable and there is no determined colored
variable uB such that B ⊆ C, then let σ(uC) = d.

Because the augmentation of a splitting substitution is unique up to the
choice of the constant d, σ is referred to as the augmentation of σ and not an
augmentation of σ. a

A few simple, but central, observations about augmentations are formulated
in the following lemma.
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Lemma 5.3 (Basic Properties of Augmentations)
Let σ be a ground splitting substitution for a derivation, and let σ be the
augmentation of σ.

1. A leaf-colored variable uB is always secured, because [uB] either equals
{uB} or the empty set. Consequently, an augmentation is defined for
all leaf-colored variables, and the restriction of an augmentation to the
leaf-colored variables is a total splitting substitution.

2. If σ is total, then σ equals σ for all the leaf-colored variables. The totality
of σ implies that [uB] = {uB} for all leaf-colored variables uB.

3. If σ is partial, then σ equals σ for the leaf-colored variables in the support
of σ. Because σ is defined for all the leaf-colored variables, whereas
σ may not be, σ is referred to as more specific than σ for leaf-colored
variables. A consequence of this is that if σ is closing, then σ is also
closing.

4. For a total splitting substitution there is no difference between secured
and determined colored variables, because if uB is a colored variable for
the derivation, then [uB] is nonempty. Consequently, if a colored variable
is secured, then it is determined.

5. If uB and uC are colored variables for a derivation and B ⊆ C, then
[uC] ⊆ [uB]. In other words, the larger B is, the smaller is [uB]. This is
because fewer colored variables have branch names that extend B. a

5.2 Definedness and Persistence

Two important properties of augmentations are formulated in the follow-
ing lemmas. Because these are very important, they are referred to as the
Definedness Lemma and the Persistence Lemma.

Lemma 5.4 (Definedness Property for Augmentations)
Let σ be a ground splitting substitution for a derivation, and suppose that
the derivation conforms to an irreflexive reduction ordering C induced by
a �-admissible splitting relation @ for σ. Then, σ, the augmentation of σ, is
defined for all colored variables for the derivation. a

Proof. Suppose for a contradiction that σ is undefined for a colored variable
uS for the derivation. By definition, uS is not secured, and consequently, there
are two leaf-colored variables, uB and uC from [uS], that are assigned different
ground terms by σ. Because @ is a splitting relation for σ, there are dual
elements b and c in B and C, respectively, such that (b4 c) @ u. Because S ⊆ B
and S ⊆ C, and B and C are branch names, which implies that they do not
contain dual indices, neither b nor c are in S. Consequently, for uB and uC to
be leaf-colored variables for the derivation, (b4 c) is expanded somewhere
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above u. This provides a contradiction, because the derivation is assumed to
be conforming. QED

Lemma 5.5 (Persistence Property for Augmentations)
Let σ be a ground splitting substitution for a derivation, let σ be the augmenta-
tion of σ, and suppose that uB and uC are secured variables for the derivation
such that B ⊆ C. Then, σ(uB) = σ(uC). a

Proof. If there is a determined colored variable uA such that A ⊆ B, then,
because B ⊆ C, σ(uA) = σ(uB) = σ(uC). If not, then uB is not determined. By
assumption, uB is secured, so [uB]σ is empty. Because [uC] ⊆ [uB], it must also
be the case that [uC]σ is empty. Consequently, uB and uC are assigned the
same fixed constant. QED

Example 5.6 (Augmentation of a Splitting Substitution)
The result of replacing each sequent in the derivation from Example 4.28 with
its corresponding colored sequent is the following object.

u13/a

v13/a

13

Pu13a ` Pav13

u14/b

v14/a

14

Pu14a ` Pbv14

Pu1a ` Pav1 ∧ Pbv1

u23/a

v23/b

23

Pu23b ` Pav23

u24/b

v24/b

24

Pu24b ` Pbv24

Pu2b ` Pav2 ∧ Pbv2

Pu∅a∨ Pu∅b ` Pav∅ ∧ Pbv∅

Pu∅a∨ Pu∅b ` ∃x(Pax∧ Pbx)

∀x
u

(Pxa
1

∨ Pxb
2

) ` ∃x
v

(Pax
3

∧ Pbx
4

)

If σ is the splitting substitution given above the leaf sequents, then the aug-
mentation σ of σ is given as follows.

w u∅ u1 u13 u14 u2 u23 u24 v∅ v1 v13 v14 v2 v23 v24

σ(w) − − a b − a b − a a a b b b

– For each leaf-colored variable w it is the case that w is determined and
that σ(w) = σ(w). This is because σ is total and [w] = {w}. For example,
σ(u13) = a, because [u13] = {u13} and σ(u13) = a.

– Both v1 and v2 are determined, because [v1]σ = {v13, v14}σ = {a} and
[v2]σ = {v23, v24}σ = {b}. Therefore, σ(v1) = a and σ(v2) = b.

– Only four variables, u∅, u1, u2, and v∅, are not secured. Consequently, σ
is undefined for these.
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– u∅ is not secured, because [u∅] = {u13, u14, u23, u24} and σ(u13) 6=
σ(u14).

– u1 is not secured, because [u1] = {u13, u14} and σ(u13) 6= σ(u14).
– u2 is not secured, because [u2] = {u23, u24} and σ(u23) 6= σ(u24).
– v∅ is not secured, because [v∅] = {v13, v14, v23, v24} and σ(v13) 6=
σ(v23).

Observe that the colored variables u3, v3, u4, and v4 are not considered,
because they are not colored variables for the derivation. In Chapter 7 such
colored variables play an important role, but for now, there is no need to
worry about them. �

5.3 Conformity and Proof Invariance

The Conformity Lemma (3.21), and the Proof Invariance Lemma (3.22), from
Section 3.6 are stated for the basic variable-sharing calculus to prove the Per-
mutation Theorem (3.23), that there always exists a proof that conforms to an
irreflexive reduction ordering that contains �. To prove soundness by means
of a permutation argument, a corresponding theorem is necessary for variable
splitting. The Conformity Lemma (3.21) applies without change, because any
induced reduction ordering for a �-admissible splitting relation contains �.
The Proof Invariance Lemma (3.22), however, needs to be reformulated in
terms of closing and �-admissible splitting substitutions.

Lemma 5.7 (Proof Invariance for�-admissibility)
Let D ′ be a permutation of a derivation D, and let σ be a closing and
�-admissible splitting substitution for D. Then, there is a closing and �-
admissible splitting substitution σ ′ for D ′. a

Proof. The set of leaf-colored variables for D ′ might be different from the set
of leaf-colored variables for D, so a corresponding splitting substitution σ ′

for D ′ is defined as follows. If σ(uB) = t and B ⊆ B ′ for a branch B ′ of D ′, let
σ ′(uB

′
) = t. It suffices to show that σ ′ is closing and�-admissible. To see that

σ ′ is closing for D ′, let Γ ′ be a leaf sequent of a branch B ′ of D ′. Because D ′ is
a permutation of D, there is a leaf sequent Γ of a branch B of D such that all
formulas in Γ are �-smaller than, or equal to, formulas in Γ ′ and B ⊆ B ′. In
particular, there is a pair of atomic formulas in Γ that are closed by σ. These
formulas must also be in Γ ′, which implies that σ ′ closes Γ ′. Consequently, σ ′

closes D ′. Finally, the �-admissibility of σ ′ is implied by the �-admissibility
of σ, because a splitting relation for σ is also a splitting relation for σ ′. This
may be seen as follows. Let @ be a splitting relation for σ. It suffices to show
that @ is a splitting relation for σ ′. Suppose that σ ′ assigns different terms
to the colored variables uB′ and uC′ . By definition of σ ′ there are branches
B ⊆ B ′ and C ⊆ C ′ such that σ(uB) = σ ′(uB

′
) and σ(uC) = σ ′(uC

′
). Because
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σ(uB) 6= σ(uC) and @ is splitting relation for σ, there are dual elements b ∈ B
and c ∈ C such that (b4 c) @ u. Because b ∈ B ′ and c ∈ C ′, the requirement
for being a splitting relation for σ ′ is fulfilled. QED

A consequence of these lemmas is the following Permutation Theorem for
VS(�)-proofs, which justifies the assumption that a given VS(�)-proof is
conforming.

Theorem 5.8 (Existence of a Conforming VS(�)-proof)
Let 〈D,σ〉 be a VS(�)-proof of Γ , and let C be an irreflexive reduction ordering
such that � is contained in C. Then, there exists a permutation D ′ of D that
conforms to C and a splitting substitution σ ′ such that 〈D ′, σ ′〉 is a VS(�)-
proof of Γ . a

Proof. By the Conformity Lemma (3.21) and the Proof Invariance Lemma
(5.7). QED

5.4 Soundness of VS(�) via Countermodel Preservation

The first soundness proof is based on the following countermodel preservation
lemma.

Lemma 5.9 (Countermodel Preservation for�-admissibility)
Let M be a countermodel for the root sequent of a derivation, let σ be a ground
splitting substitution for the derivation, and suppose that the derivation
conforms to an irreflexive reduction ordering induced by a �-admissible
splitting relation for σ. Then, there is a total extension σ ′ of σ and a leaf
sequent Γ such that M |= Γ̂σ ′. a

Technical Remark. This lemma is proved in full generality for partial splitting
substitutions, not necessarily total. This is the reason for formulating it in
terms of a total extension of σ instead of just writing Γ̂σ, because the latter may
contain leftover free variables after the application of σ. This is not the case
for a total extension of σ, which must assign ground terms to all leaf-colored
variables for a derivation. For total splitting substitutions, the claim would
simply be that there is a leaf sequent Γ such that M |= Γ̂σ.

Proof. Let σ be the augmentation of σ, and replace all sequents Γ with Γ̂σ, the
result of applying the augmentation σ to the corresponding colored sequent.
It suffices to show that whenever M is a countermodel for the conclusion of
an inference in this object (which, strictly speaking, is not a derivation), then
M is also a countermodel for one of the premisses. Then, by induction on the
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construction of the derivation, there is a branch such that M is a countermodel
for the leaf sequent Γ̂σ of this branch, and by Lemma 5.3, σ is a total extension
of σ.

There are four cases to consider, according to the type of the expanded formula
in an inference. If the expanded formula is of type α, γ, or δ, then being a
countermodel is trivially preserved.

– If M |= α̂σ, then M |= α̂1σ and α̂2σ.

– If M |= γ̂σ, then M |= γ̂1σ.

– If M |= δ̂σ, then M |= δ̂1σ, because M is canonical.

The interesting case is when the expanded formula in an inference is of type
β. To show that M is a countermodel for one of the premisses, both the choice
of β0-formula and the fact that the branch name changes must be taken
into account. By the Definedness Lemma (5.4), σ is defined for all colored
variables for the derivation, and by the Persistence Lemma (5.5), if uB and uC

are colored variables for the derivation such that B ⊆ C and σ(uB) = t, then
σ(uC) = t. The first lemma implies that there are no colored variables left in β̂
after the application of σ, and the second lemma implies that terms assigned
by σ do not change when the branch names are increased. QED

With the help of this lemma, the proof of soundness of VS(�) is straightfor-
ward.

Theorem 5.10 (Soundness of VS(�))
A VS(�)-provable sequent is valid. a

Proof (1). Let 〈D,σ〉 be a VS(�)-proof of the sequent. By the Permutation
Theorem (5.8), we may assume that D conforms to an irreflexive reduction
ordering induced by a �-admissible splitting relation for σ. Suppose for a
contradiction that the sequent has a countermodel M. By the Countermodel
Preservation Lemma (5.9), there is a leaf sequent Γ such that M |= Γ̂σ ′, where
σ ′ is a total extension of σ. By assumption, σ closes Γ̂ . Because σ ′ is a total
extension of σ, σ ′ also closes Γ̂ . This is impossible, because M |= Γ̂σ ′. QED

5.5 Soundness of VS(�) via Proof Transformation

The definedness and persistence properties of augmentations also provide the
basis for proving soundness of VS(�) by means of proof transformation, as
follows.

Proof (2). Let 〈D,σ〉 be a VS(�)-proof of the sequent. Then, there is a �-
admissible splitting relation @ for σ such that the induced reduction ordering,
the transitive closure of (� ∪ @), is irreflexive. By the Soundness Theorem
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(4.14) for the variable-pure calculus, it suffices to transform the variable-
splitting proof into a variable-pure proof of the same sequent. By the Permuta-
tion Theorem (5.8), we may assume that D conforms to the reduction ordering.
Let D̂vp be the corresponding variable-pure derivation, as in Definition 4.16.
(Equivalently, by induction on the construction of D, construct a variable-pure
derivation D̂vp by applying the rules in the same order as for D, but by intro-
ducing a colored variable uB for each γ-rule applied to a formula u in branch
B. This is exactly what is done in Example 4.22.) To obtain a variable-pure
proof, it suffices to define a closing variable-pure substitution for D̂vp. To this
end, let σ be the augmentation of σ. It suffices to show that σ is closing for D̂vp,
for then the restriction of σ to the colored variables in D̂vp may be taken to be
the desired variable-pure substitution. (The domain of the augmentation may
contain more than required for the domain of a variable-pure substitution,
hence the restriction.) That σ is closing for D̂vp follows from the Definedness
Lemma (5.4), which applies because the derivation is conforming, and the
Persistence Lemma (5.5). The details are as follows. Let Γ be a leaf sequent
of a branch C. By assumption, σ closes Γ̂ . Because σ is an augmentation of σ,
σ also closes Γ̂ . (See Lemma 5.3 for details.) It suffices to show that σ closes
Γ̂vp. By the definedness property, σ is defined for all variables in Γ̂vp. By the
persistence property, σ(uB) = σ(uC) for all variables uB in Γ̂vp. Consequently,
σ closes Γ̂vp. QED

5.6 Completeness of VS(�)

There is not much focus on completeness in this thesis, and the reason is
that proofs without variable splitting are easily transformed into proofs with
variable splitting. This is made precise in the following theorem, which gives
a transformation of a variable-pure proof into a variable-splitting proof.

Theorem 5.11 (Completeness of VS(�))
A valid sequent is VS(�)-provable. a

Proof. By the Completeness Theorem (4.15) for the variable-pure calculus,
there is a variable-pure proof 〈D̂vp, σvp〉 of the sequent. It suffices to transform
this proof into a VS(�)-proof. Recall that D̂vp is a variable-pure derivation
with colored sequents and that D is the underlying variable-sharing derivation.
(Alternatively, by induction on the construction of D̂vp, construct D by apply-
ing the rules in exactly the same order as for D̂vp, but by introducing an instan-
tiation variable u for each γ-rule applied to a formula with index u.) Define
the splitting substitution σ from σvp as follows. If σvp(uB) = t, B ⊆ C, and uC

is a colored variable for a leaf sequent in D, let σ(uC) = t. Then, σ is a splitting
substitution that closes D. To show that σ is �-admissible, let @ be the least
relation such that if β and γ are formulas in a branch of D and β is expanded
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somewhere below γ, then β @ γ. The relation @ is then a splitting relation
for σ. To see this, suppose that σ(uS) 6= σ(uT ). By definition of σ, there are
colored variables uS′ and uT ′ such that σvp(uS′

) = σ(uS) 6= σ(uT ) = σvp(uT
′
).

Because uS′ and uT ′ are assigned different terms by σvp, they are introduced
in different branches of D̂vp, and therefore there is some expanded formula β
below both of the inferences introducing these variables. Consequently, β @ u.
The splitting relation @ is �-admissible, because both � and @ relate only
formulas that are below each other in a branch. QED

An alternative proof of completeness may be based on transforming a variable-
sharing proof into a VS(�)-proof by using an empty splitting relation. Al-
though this is simpler, it does not bring to light the tight correspondence
between variable-pure and variable-splitting proofs.
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Chapter 6

Liberalizations

The topic of this chapter is how VS(�) may be liberalized such that proofs
become smaller and, ideally, easier to find. A guiding motivation is that
liberalizations may contribute to the removal of search space redundancies
and, as a consequence, provide a better basis for efficient proof search.

A common denominator for liberalizations is that more objects become per-
missible as proofs than before: A derivation that does not give rise to a proof,
may do so after an appropriate liberalization. For this reason, the main chal-
lenge with a liberalization is to prove soundness. Completeness comes for
free, because a proof before a liberalization is also a proof afterwards.

A liberalization is here obtained as the result of changing the notion of
admissibility such that a derivation may be closed by splitting substitutions
that were not admissible before. There are two main ways of doing this: The
first is by liberalizing the �-relation, and thereby also the reduction ordering.
This is the topic of Sections 6.1–6.3. The second is to allow for partial splitting
substitutions, and this is the topic of Sections 6.4–6.5. The effect, in both
cases, is that more splitting substitutions become admissible and that the
proofs become smaller. (Another liberalization may be achieved by allowing
nonground splitting substitutions. This is discussed in Section 8.2.) Section 6.6
shows that if the reduction ordering is liberalized too much, then the resulting
calculus becomes unsound.

It is a challenge to define splitting substitutions such that the resulting calcu-
lus is both as simple and liberal as possible, while maintaining soundness.
For instance, the particular liberalization presented in [AW07a] is an attempt
to achieve a good balance between simplicity and liberality. The calculus in
[AW07a] is referred to as VS(l, P) in this thesis. In general, the stronger the
liberalization, the harder it is to prove soundness syntactically, by means of
proof transformation. In this chapter and the next, there is therefore a grad-
ual shift from proof transformations to more powerful, semantic arguments.
However, proof transformations are given wherever possible.
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6. Liberalizations

6.1 Copies of Formulas and the �−-relation

A first, natural, liberalization is the replacement of � with a smaller relation,
�−, that does not relate copies of γ-formulas with each other. The�−-relation
corresponds more closely to a subformula ordering on formulas, as defined
in, for example, [Bib87, Wal90, KO99], and is made precise in the following
definition.

Definition 6.1 (The�−-relation)
Let �−

1 be the least relation on formulas such that the following conditions
hold, and let �− be the transitive closure of �−

1 .

– α�−
1 {α1, α2}

– β�−
1 {β1, β2}

– γ�−
1 γ1 (Note that γ 6�−

1 γ
′.)

– δ�−
1 δ1

– If θ�−
1 γ and γ ′ is a copy of γ, then θ�−

1 γ
′. a

Notation. The �−-relation between formulas is displayed in the following
way.

α

α1 α2

β

β1 β2

γ

γ1

δ

δ1

θ

γ γ ′ γ ′′

. . .

The first observation is that �− is a proper subset of �. Because of the last
item in the definition, �−

1 is not a subset of �1, but it is nevertheless a
subset of �, the transitive closure of �1. This is because � relates copies of
γ-formulas with each other. Consequently, both �−

1 and �− are subsets of �.
Whereas � captures the generation of formulas, or the minimal constraint on
the order of formula expansion, �− captures a subformula relation.

Like for the �-relation in Definition 4.19, the restriction of �− to the β-
formulas for a derivation is denoted by �−

β , and the restriction of �− to
the β0-formulas for a derivation is denoted by �−

β0
. Observe that �β equals

�−
β . This is because formulas may not simultaneously be of type γ and β.

For intuitionistic propositional logic, however, this is not the case, because
formulas may be of both generative and branching type; see Section 8.7.

The �−-relation gives rise to a new, and more liberal, notion of admissibility.
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Definition 6.2 (�−-admissibility)
A splitting relation @ is �−-admissible if the transitive closure of (�− ∪ @),
called the reduction ordering induced by �− and @, is irreflexive. A splitting
substitution σ is �−-admissible if there is a �−-admissible splitting relation
for it. a

Definition 6.3 (VS(�−)-provability)
If D is a derivation of Γ and σ is a total, closing and �−-admissible splitting
substitution for D, then the pair 〈D,σ〉 is a VS(�−)-proof of Γ . The resulting
calculus is denoted by VS(�−). a

It is not hard to see that this is a proper liberalization in the sense that more
splitting relations, and thus more substitutions, are admissible. This is best
explained by example.

Example 6.4 (Difference between� and�−)
Suppose that the γ-formulas u1, u2, u3 and the β-formulas b1, b2, b3 are
expanded in a derivation and related in the following way.

u1

b1

u2

b2

u3

b3

The copies of the γ-formula are all �-related, from left to right, such that
u1 � u2 � u3. The γ-formula u2 is a copy of u1, and u3 is a copy of u2.
Because of this, it is not �-admissible to split u1 at all, and u2 may only
be split by the leftmost β-index; in general variables may only be split by
β-indices to the left of them. There is thus only one maximal �-admissible
splitting relation.

On the other hand, if copies of the γ-formula are not related, which is the case
with the �−-relation, then there are no such constraints, and it is possible to
split the variables in several different ways. In this particular case, there are
six maximal �−-admissible splitting relations, illustrated as follows.
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u1

b1

u2

b2

u3

b3

u1 C u2 C u3

u1

b1

u2

b2

u3

b3

u1 C u3 C u2

u1

b1

u2

b2

u3

b3

u2 C u1 C u3

u1

b1

u2

b2

u3

b3

u2 C u3 C u1

u1

b1

u2

b2

u3

b3

u3 C u1 C u2

u1

b1

u2

b2

u3

b3

u3 C u2 C u1

Observe that a conforming permutation only exists in the case where u1Cu2C
u3. For instance, if b2 @ u1 holds, then the reduction ordering must satisfy
u2 C u1, and then, in a conforming permutation, u2 may not be expanded
above u1. This is unavoidable, however, because u2 is a copy of u1. �

It may be desirable to have the freedom provided by the �−-relation. At
first sight, a potential problem lies in proving soundness, because it is not
evident that this liberalization is sound. In calculi without variable splitting it
is obviously sound, but with variable splitting, such a liberalization seems to
provide an additional degree of freedom.

All the previous soundness proofs have been based on permutation properties,
but, as the last example shows, it is no longer safe to assume that a derivation
conforms to a reduction ordering. In Section 7.5, more powerful methods
for proving soundness are introduced, and these may easily be used for
showing soundness of VS(�−). The following, however, is a method based on
permutations.

Example 6.5 (Re-indexing)
Instead of expanding the γ-formulas in the order u1, u2, u3, . . . , as in Exam-
ple 6.4, they may be expanded in a different order, in particular, in an order
that corresponds to an irreflexive reduction ordering. This amounts to chang-
ing the �-relation, but only with respect to the order in which γ-formulas
are expanded. The resulting derivation should have exactly the same branch
names and the same leaf sequents as the original derivation. Returning to
Example 6.4, the formulas may be re-index in the following way.
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u1

b1

u2

b2

u3

b3

u2 C u3 C u1

becomes u2

b2

u3

b3

u1

b1

u2 � u3 � u1

u1

b1

u2

b2

u3

b3

u3 C u2 C u1

becomes u3

b3

u2

b2

u1

b1

u3 � u2 � u1

�

Lemma 6.6 (Re-indexing)
Let D be a derivation and C an irreflexive reduction ordering such that �− is
contained in C. Then, there is a re-indexing of the formulas, such that the new
�-relation contains �− and the transitive closure of (C ∪ �) is irreflexive,
and there is a derivation, with the same branch names and leaf sequents as D,
that conforms to C. a

Proof. The idea is to define a new �-relation, which is in accordance with
the reduction ordering C, by extending �− such that γ-formulas also are
related to each other. A new derivation may then be constructed by expanding
exactly the same formulas as in D and by doing so in accordance with the
new�-relation. The�-relation may be defined as follows. For each expanded
γ-formula g0 that is not a copy of another γ-formula, let 〈g0, g1, . . . , gn〉 be the
sequence of expanded γ-formulas such that gi+1 is a copy of gi. Because the
reduction ordering C is irreflexive, the elements of each such sequence may be
reordered such that if g and g ′ are elements of the same sequence and gC g ′,
then g is to the left of g ′. Let � be the smallest relation containing �− such
that if g is left of g ′ in a sequence, then g� g ′. By construction, the transitive
closure of (C ∪ �) is irreflexive. By induction on this relation, along the lines
of the proof of the Conformity Lemma (3.21), a new derivation with the same
branch names and leaf sequents as D may be constructed. QED

Theorem 6.7 (Soundness of VS(�−))
A VS(�−)-provable sequent is valid. a

Proof. Let 〈D,σ〉 be a VS(�−)-proof. Then, there is a �−-admissible splitting
relation @ for σ such that the induced reduction ordering C, the transitive
closure of (�− ∪ @), is irreflexive. By the Re-indexing Lemma (6.6), there is a
VS(�)-proof of the same root sequent. By the Soundness Theorem (5.10) for
VS(�), the sequent is valid. QED

79



6. Liberalizations

It is unclear whether this liberalization provides a significant advantage in
terms of search space complexity and advantages for proof search. It seems to
provide some additional freedom in terms of the number of �−-admissible
substitutions, but at the cost of introducing nondeterminism.

6.2 Critical Variables and the l-relation

Example 6.8 (Motivating Liberalized Variable Splitting)
Recall the derivation from Example 4.3.

u1/a

1

Pu ` Pa

u2/b

2

Pu ` Pb

Pu ` Pa∧ Pb

` Pu→ Pa∧ Pb

` ∃x
u

(Px→ Pa
1

∧ Pb
2

)
u

(14 2)

The splitting substitution {u1/a, u2/b} closes the derivation but is not �-
admissible, because u� (14 2) @ u. A VS(�)-proof requires the expansion
of another copy of the γ-formula. There is also no variable-pure proof with
only one instance of the γ-formula. �

The next notion of admissibility, called l-admissibility, will render the substi-
tution in the previous example admissible.

Definition 6.9 (Critical Variable)
If a variable u occurs in both β1 and β2, for a formula β, then u is called
critical for β, written ul β. If B is the branch name associated with β, then uB

is referred to as a critical colored variable. a

Notation. A solid arrow from b to u in a diagram means that u is critical for b,
and a dotted arrow means that u is not critical for b.

(Pu∨Qu)>

u is critical
u

(14 2)
(Pu∨ Pa)>

u is not critical
u

(14 2)
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Notice that the l-relation is a subset of both the �- and the �−-relation.
The next task is to define a suitable notion of admissibility on the basis of
this relation and a given splitting relation @. Because both @ and l only
relate β- and γ-formulas, it is natural to restrict the attention to these. In
soundness proofs, the aim is usually to identify some branch of a derivation
with certain properties, and in such a construction, each expanded β-formula
in the derivation is a possible choice point. Therefore, reduction orderings will
be restricted to β-formulas for a derivation. This could have been done for the
previous reduction ordering as well, but there would be nothing to gain from
it. In light of viewing β-formulas as choice points, it is also natural to include
the �β-relation in the reduction ordering.

Definition 6.10 (l-admissibility)
A splitting relation @ is l-admissible if the transitive closure of the union of

– the composition of @ and l, and

– �β, the restriction of � to the expanded β-formulas,

called the reduction ordering induced by l and@, is irreflexive. Pictorially, (@ ◦ l)

and a�β b may be represented as follows.

u

b

l

a

A

a

b

A splitting substitution σ is l-admissible if there is a l-admissible splitting
relation for it. a

Technical Remark. There are two other equivalent ways of obtaining the same
notion of l-admissibility. The first is by closing @ downwards under �β and
then composing with l. The other is by closing l upwards under �β, and
then composing with @. The equivalence of these notions of l-admissibility
is proved in Theorem 7.4.

Definition 6.11 (VS(l)-provability)
If D is a derivation of Γ and σ is a total, closing and l-admissible splitting
substitution for D, then the pair 〈D,σ〉 is a VS(l)-proof of Γ . The resulting
calculus is denoted by VS(l). a

Example 6.12 (l-admissible Splitting Substitution)
The derivation from Example 6.8, together with the substitution {u1/a, u2/b},
gives a VS(l)-proof, because the splitting relation {(142) @ u} is l-admissible.
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u1/a

1

Pu ` Pa

u2/b

2

Pu ` Pb

Pu ` Pa∧ Pb

` Pu→ Pa∧ Pb

` ∃x
u

(Px→ Pa
1

∧ Pb
2

)
u

(14 2)

Although the induced reduction ordering is irreflexive, there is no direct
transformation (without expanding the copy of the γ-formula) into a proof
with another notion of admissibility. In particular, there are no nontrivial
permutations of this derivation. �

Example 6.13 (Not l-admissible Splitting Substitution)
The following derivation is not closable with a l-admissible substitution.

u1/a

1

Pu ` Pa,Qb

u2/b

2

Qu ` Pa,Qb

Pu∨Qu ` Pa,Qb

∀x
u

(Px
1

∨Qx
2

) ` Pa,Qb u

(14 2)

A splitting relation for the closing substitution {u1/a, u2/b} is {(14 2) @ u},
which is not l-admissible because ul (14 2) @ u. �

At first sight, it seems impossible to prove soundness of l-admissibility by
means of a permutation argument, but this is not the case. The difficulty lies
in the fact that the splitting relation @ may go in the opposite direction of
the �-relation without giving rise to an irreflexive reduction ordering. In
particular, there may be formulas u and b such that u � b and b @ u. In
this situation, however, there is only a cycle if ul b. The induced reduction
ordering is a relation on β-formulas, so the appropriate conformity property
for a derivation is that the β-formulas are expanded in the right order. In fact,
this is sufficient for showing a countermodel preservation property.

On the other hand, the notion of l-admissibility makes transformations
into variable-pure proofs nontrivial. This is analogous to the difficulty of
transforming free-variable tableau proofs with the δ+-rule into ground tableau
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proofs. Some kind of unwinding of proofs is probably necessary for this
purpose.

In the nonliberal case, the soundness proofs are facilitated by the fact that
the application of the augmentation of a splitting substitution to a conforming
derivation yields an object without any free variables. This is the essential con-
tent of the Definedness Lemma (5.4). With liberalized admissibility conditions,
however, the application of the augmentation of a splitting substitution to a
conforming derivation may give rise to an object that still contains colored
variables. Fortunately, it suffices to show that augmentations are defined for
critical colored variables. To take the presence of the leftover colored formulas
into account, the interpretation of formulas needs to be extended to colored
formulas.

Definition 6.14 (Interpretation of Colored Formulas)
Formulas and sequents with colored variables are interpreted as if the colored
variables were ordinary variables. More precisely, if F is a formula and Γ is a
sequent with colored variables, and F̌ and Γ̌ , respectively, denote the results1

of replacing all colored variables uS with u, then M |= F and M |= Γ mean that
M |= F̌ and M |= Γ̌ , respectively. a

Technical Remark. Another way of interpreting formulas with colored variables
is to define colored assignments, functions from colored variables to models, as,
for instance, in [AW07a].

The next lemma states a sufficient condition for countermodel preservation in
the case of β-inferences. (For a discussion of anti-prenexing, which is related
to this, see Section 8.11.) It is referred to as the β0-choice Lemma.

Lemma 6.15 (Choice of β0-subformula)
Suppose that M |= β and that no (colored) variable occurs in both β1 and β2,
in other words, that β does not contain a (colored) variable that is critical for
β. Then, M |= β1 or M |= β2. a

Proof. Suppose for a contradiction that M 6|= β1 and M 6|= β2. Then, there
are assignments, µ1 and µ2, such that M, µ1 6|= β1 and M, µ2 6|= β2. Let µ be
an assignment that agrees with µ1 for the variables in β1 and with µ2 for
the variables in β2. Such an assignment exists, because β1 and β2 have no
variables in common. Then, M, µ 6|= β1 and M, µ 6|= β2, and thus M, µ 6|= β,
contrary to the assumption that M |= β. QED

1Because this is the opposite of coloring, it is very tempting to call it “decoloring” or
“bleaching”, but because the usage is rather limited, the temptation is duly resisted.
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Because variables are implicitly universally quantified, observe that if M |= F

and F ′ is the result of replacing some variable in F with a ground term, then
M |= F ′.

The reduction ordering for l-admissibility only relates β-indices, so a slight
generalization of the Conformity Lemma (3.21), which is only stated for
reduction orderings that contain �, is needed. The Proof Invariance Lemma
(5.7), however, is still applicable (provided that � is replaced with l).

Lemma 6.16 (Existence of a Conforming Permutation – for β-formulas)
Let D be a derivation, and let C be an irreflexive reduction ordering such that
�β is contained in C. Then, there exists a permutation of D that conforms to
C. a

Proof. Like the proof of the Conformity Lemma (3.21). (Because only the
order of β-inferences is interesting, there is no need to re-index formulas, like
in the Re-indexing Lemma (6.6) or the proof of the Soundness Theorem (6.7)
for VS(�−). The order in which γ-formulas are expanded is irrelevant for the
conformity property.) QED

Theorem 6.17 (Existence of a Conforming VS(l)-proof)
Let 〈D,σ〉 be a VS(l)-proof of Γ , and let C be an irreflexive reduction ordering
such that �β is contained in C. Then, there exists a permutation D ′ of D that
conforms to C and a splitting substitution σ ′ such that 〈D ′, σ ′〉 is a VS(l)-proof
of Γ . a

Proof. By the Conformity Lemma (6.16) and The Proof Invariance Lemma
(5.7). QED

The following example shows that the application of the augmentation of a
splitting substitution to a conforming derivation may give rise to an object that
still contains free variables. To apply the β0-choice Lemma (6.15), however, it
is only necessary that σ is defined for the critical colored variables, not all the
colored variables for the derivation.

Example 6.18 (Definedness Property not Satisfied)
The definedness property in Lemma 5.4 does not hold for l-admissibility. The
corresponding statement for l-admissibility would be the following.

Let σ be a ground splitting substitution for a derivation, let σ
the augmentation of σ, and suppose that the derivation conforms
to an irreflexive reduction ordering C induced by a l-admissible
splitting relation @ for σ. Then, σ, the augmentation of σ, is defined
for all colored variables for the derivation.

The simplest possible counterexample to this statement is the following deriva-
tion and ground substitution.
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u1/a

1

Pu ` Pa

u2/b

2

Pu ` Pb

Pu ` Pa∧ Pb

` Pu→ Pa∧ Pb

` ∃x
u

(Px→ Pa
1

∧ Pb
2

)
u

(14 2)

The derivation is conforming, and u∅ is a colored variable for the derivation,
but [u∅]σ = {u1, u2}σ = {a, b}, so σ(u∅) is undefined. �

Lemma 6.19 (Definedness of Critical Colored Variables)
Let σ be a ground splitting substitution for a derivation, and suppose that
the derivation conforms to an irreflexive reduction ordering C induced by
a l-admissible splitting relation @ for σ. Then, σ, the augmentation of σ, is
defined for all critical colored variables for the derivation. a

Proof. Suppose for a contradiction that σ is undefined for a critical colored
variable uS for the derivation and that uS occurs in both β̂S1 and β̂S2 . By
definition, uS is not secured, and consequently, there are two leaf-colored
variables, uB and uC from [uS], that are assigned different ground terms by σ.
Because @ is a splitting relation for σ, there are dual elements b and c in B
and C, respectively, such that (b4 c) @ u. Because u is critical for β, ulβ, the
reduction ordering satisfies (b4 c)C β. Because the derivation is conforming,
(b4 c) is not expanded above β. But, because S ⊆ B, S ⊆ C, and B and C are
branch names, neither b nor c may be in S. Consequently, (b4 c) is expanded
somewhere above β, providing a contradiction. QED

With these preliminaries, everything is in place to prove soundness of VS(l).
Most of the proof of the following Countermodel Preservation Lemma for
l-admissibility is identical to the proof of the Countermodel Preservation
Lemma (5.9) for�-admissibility. The essential difference is the definedness
property (the persistence property is identical).

Lemma 6.20 (Countermodel Preservation for l-admissibility)
Let M be a countermodel for the root sequent of a derivation, let σ be a ground
splitting substitution for the derivation, and suppose that the derivation
conforms to an irreflexive reduction ordering induced by a l-admissible
splitting relation for σ. Then, there is a total extension σ ′ of σ and a leaf
sequent Γ such that M |= Γ̂σ ′. a

Proof. Let σ be the augmentation of σ, and replace all sequents Γ with Γ̂σ, the
result of applying the augmentation σ to the corresponding colored sequent.
It suffices to show that whenever M is a countermodel for the conclusion of
an inference in this object (which, strictly speaking, is not a derivation), then

85



6. Liberalizations

M is also a countermodel for one of the premisses. Then, by induction on the
construction of the derivation, there is a branch such that M is a countermodel
for the leaf sequent Γ̂σ of this branch, and by Lemma 5.3, σ is a total extension
of σ.

There are four cases to consider, according to the type of the expanded formula
in an inference. If the expanded formula is of type α, γ, or δ, then being a
countermodel is trivially preserved.

– If M |= α̂σ, then M |= α̂1σ and α̂2σ.
– If M |= γ̂σ, then M |= γ̂1σ.
– If M |= δ̂σ, then M |= δ̂1σ, because M is canonical.

The interesting case is when the expanded formula in an inference is of type
β. To show that M is a countermodel for one of the premisses, both the choice
of β0-formula and the fact that the branch name changes must be taken into
account. (From this point, the proof differs from the proof of Lemma 5.9.)
Suppose that the inference is of the following form, where B is the branch
name for the conclusion, B1 and B2 are the branch names for the premisses,
and β is the expanded formula.

Γ̂B1

1 σ Γ̂B2

2 σ

Γ̂Bσ

By assumption, M |= Γ̂Bσ, and it suffices to show that either M |= Γ̂B1

1 σ or
M |= Γ̂B2

2 σ. By the Definedness Lemma (6.19), σ is defined for all critical
colored variables in Γ̂B, so there are no critical colored variables left in β̂

after the application of σ. This makes the β0-choice Lemma (6.15) applicable,
which implies that either M |= Γ̂B1 σ or M |= Γ̂B2 σ. By the Persistence Lemma
(5.5), which says that if uB and uC are colored variables for the derivation
such that B ⊆ C and σ(uB) = t, then σ(uC) = t, it follows that either M |=
Γ̂B1

1 σ or M |= Γ̂B2

2 σ, which is the desired conclusion. (Observe that σ may be
undefined for a colored variable uB in Γ̂B that is not critical, but defined for
a colored variable uBi , for i = 1 or 2. This does not harm the countermodel
preservation, however, because formulas are interpreted under all variable
assignments.) QED

Theorem 6.21 (Soundness of VS(l))
A VS(l)-provable sequent is valid. a

Proof. Let 〈D,σ〉 be a VS(l)-proof of the sequent. By the Permutation The-
orem (6.17), we may assume that D conforms to an irreflexive reduction
ordering induced by a l-admissible splitting relation for σ. Suppose for a
contradiction that the sequent has a countermodel M. By the Countermodel
Preservation Lemma (6.20), there is a leaf sequent Γ such that M |= Γ̂σ ′, where
σ ′ is a total extension of σ. By assumption, σ closes Γ̂ . Because σ ′ is a total
augmentation of σ, σ ′ also closes Γ̂ . This is impossible, because M |= Γ̂σ ′.QED
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6.3 Proof Complexity of VS(l)

The following is a comparison of proof complexity in terms of minimal proof
size for VS(�) and VS(l). Neither VP, VS(�), nor VS(�−) can polynomially
simulate VS(l). It is here shown that VS(l)-proofs may be exponentially
smaller than the corresponding VS(�)- or VP-proofs.

Theorem 6.22 (Exponential Speedup for VS(l))
VS(�) does not polynomially simulate VS(l). More precisely, there is a set
of valid formulas {ϕ1, ϕ2, ϕ3, . . .} such that vsl(n), the size of the smallest
VS(l)-proof of ϕn, is Θ(n), and vs�(n), the size of the smallest VS(�)-proof
of ϕn, is Θ(2n). a

Proof. One such class of formulas, inspired by the class of formulas found in
[BHS93], is {ϕn}16n, recursively defined by

ϕ0 = T and ϕn = ∃x(ϕn−1 ∧ (Pnx→ (Pna∧ Pnb))),

where T is some propositional tautology. The number of branches of the
smallest VS(l)-proof of ϕn is

vsl(n) = vsl(n− 1) + 2 = 2n+ 1,

whereas the number of branches of the smallest VS(�)-proof of ϕn is

vs�(n) = 2 · vs�(n− 1) + 2 = 3 · 2n − 2.

Too see this, consider the following derivation of ϕn.

` ϕn−1, ϕ
′
n

bncn

Pnun ` Pna,ϕ
′
n

bndn

Pnun ` Pnb,ϕ
′
n

Pnun ` Pna∧ Pnb,ϕ
′
n

` Pnu→ (Pna∧ Pnb), ϕ
′
n

` ϕn−1 ∧ (Pnun → (Pna∧ Pnb)), ϕ
′
n

` ∃x
un

(ϕn−1
un−1

∧ (Pnx →
bn

(Pna
cn

∧ Pnb
dn

)))

un

4

un−1

...

u1

4

u0 (c1 4 d1)

(cn 4 dn)
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The shortest VS(l)-proof of ϕn is obtained by closing the leftmost branch with
vsl(n− 1) branches and the two rightmost branches by ubncn

n /a and ubndn
n /b.

The resulting splitting substitution is l-admissible because no variables are
critical (see the right-hand diagram). Thus, the shortest VS(l)-proof of ϕn has
vsl(n− 1) + 2 branches.

The splitting substitution is, however, not �-admissible. Because of the strict
reduction ordering in VS(�), there is nothing to gain from colored variables at
all. The splitting sets may be omitted from the colored variables altogether. To
obtain a VS(�)-proof of ϕn, the leftmost branch requires vs�(n− 1) branches,
the middle branch may be closed by un/a, and the rightmost branch may be
extended in the following way.

Pnun ` Pnb,ϕ ′n−1

u ′n/b

Pnun, Pnu
′
n ` Pnb, Pna∧ Pnb

Pnun ` Pnb, Pnu
′
n → (Pna∧ Pnb)

Pnun ` Pnb,ϕ ′n−1 ∧ (Pnu
′
n → (Pna∧ Pnb))

Pnun ` Pnb,ϕ
′
n

The leftmost branch again requires vs�(n−1) branches, whereas the rightmost
branch may be closed by {u ′n/b}. Thus, the shortest VS(�)-proof of ϕn has
2 · vs�(n− 1) + 2 branches. The following table shows the exponential growth.

n vsl(n) vs�(n)

0 1 1

1 3 4

2 5 10

3 7 22

4 9 46
...

...
...

n v+(n− 1) + 2 2 · v(n− 1) + 2

= 2n+ 1 = 3 · 2n − 2

Note that the exponential speedup is independent of the particular type of
δ-rule used in the calculus, because there are no δ-formulas to expand. QED
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6.4 Partial Splitting Substitutions

Until now, only VS(�)-proofs 〈D,σ〉, where σ is a total splitting substitution
for D, have been considered. It is time to have a look at partial splitting
substitutions, which are ground, but not necessarily total. (Recall that a
splitting substitution is total if it is ground and the support is the set of all
leaf-colored variables.)

It often seems unnecessarily strict to require splitting substitutions to be total.
A typical situation where partial splitting substitutions are desirable, because
they allow for more than total ones, is when a leaf sequent may be closed by
an empty substitution; for example, if the leaf sequent of a branch B contains
Pu> and Pu⊥, or unifiable formulas without any variables at all, in which case
it is not necessary to assign a value to the colored variable uB to close the
branch. Ideally, it should be possible to close a derivation without assigning
ground terms to all of the leaf-colored variables. It should suffice to assign
terms such that each colored leaf sequent becomes an axiom.

Partial splitting substitutions are usually more natural than total splitting
substitutions, but the advantage of the latter is that they give rise to simpler
soundness proofs. In general, fewer restrictions on splitting substitutions leads
to more complicated soundness proofs. (In [AW07a], they are partial, and all
the technical details are spelled out, but, in [AW07b], they are total to avoid
these details and to improve readability.)

An interesting feature of variable splitting, in contrast to ordinary free-variable
calculi without variable splitting, is that it is not harmless to extend a partial
closing splitting substitution to variables that are not in the support. Of course,
closability remains unchanged, but admissibility may be destroyed. This is
one of the things that makes partial splitting substitutions interesting and
somewhat more complicated.

A final note, before partial splitting substitutions are investigated in more
detail, is that there is a relation between augmentations and partial splitting
substitutions. The purpose of an augmentation is partly to bridge the gap
between partial and total splitting substitutions by making explicit the in-
formation that is implicitly available in partial splitting substitutions. (This
relation is made particularly clear in Section 7.6.)

A nice feature of the definition of a splitting relation (Definition 4.20) and
the definitions of admissibility (Definitions 4.24, 6.2, and 6.10) is that they
only require a splitting substitution to be ground, not necessarily total. The
notions of provability, on the other hand, are defined only for total splitting
substitutions. A consequence is that the definitions of admissibility may
remain unchanged and that only new notions of provability need to be
defined.
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Definition 6.23 (Provability with Partial Splitting Substitution)
– VS(�, P) is defined like VS(�) in Definition 4.25, but without the re-

quirement of totality.

– VS(�−, P) is defined like VS(�−) in Definition 6.3, but without the
requirement of totality.

– VS(l, P) is defined like VS(l) in Definition 6.11, but without the require-
ment of totality. a

The next example shows that VS(�, P) is more liberally defined than VS(�).
All VS(�)-proofs are VS(�, P)-proofs, but not the other way around. Similar
examples exist for the other notions of provability as well.

Example 6.24 (VS(�, P)-provability)
The following derivation is closed by the partial substitution {u23/a, u24/b},
which is �-admissible because of the splitting relation {(34 4) @ u}. This is
therefore a VS(�, P)-proof.

1

Pu ` Qa∧Qb, Pu

` Qa∧Qb, Pu→ Pu

u23/a

23

Qu ` Qa

u24/b

24

Qu ` Qb

Qu ` Qa∧Qb

(Pu→ Pu)→ Qu ` Qa∧Qb

∀x
u

((Px→
1
Px)→ Qx

2
) ` Qa

3
∧Qb

4

u

(14 2) (34 4)

On the other hand, there are no total splitting substitutions that are both
closing and �-admissible. A total splitting substitution must have u1 in its
support, and the ground term assigned to u1 must differ from either a or b,
which are the terms assigned to u23 and u24. A splitting relation must satisfy
(14 2) @ u, and then the induced reduction ordering must be cyclic. Thus,
VS(�, P)-proofs are more liberally defined than VS(�)-proofs, because this
derivation gives rise to a VS(�, P)-proof, but not a VS(�)-proof.

It is, however, possible to expand the derivation into a balanced derivation
that is closed by a total �-admissible splitting substitution. For instance, if
the formula Qa∧Qb in branch 1 is expanded, then the splitting substitution
{u13/a, u14/b, u23/a, u24/b} is total, closing and �-admissible. �

Partial substitutions allow for smaller proofs. The previous example also
shows a general phenomenon with variable splitting: Additional freedom is
gained by expanding β-formulas in the context. This is explored further in
Section 8.1.
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Theorem 6.25 (Soundness of VS(�, P))
A VS(�, P)-provable sequent is valid. a

Proof. Both proofs of the Soundness Theorem (5.10) for VS(�), the first by
countermodel preservation and the second by proof transformation, are also
proofs of soundness for VS(�, P), because the totality assumption is never
used. QED

There is another way of proving soundness of VS(�, P) via proof transfor-
mations, namely by transforming a VS(�, P)-proof into a VS(�)-proof. This
may by done by balancing a derivation and extending a splitting substitution
such that it becomes total. This requires more general terminology and is
postponed until Section 7.6.

Theorem 6.26 (Soundness of VS(l, P))
A VS(l, P)-provable sequent is valid. a

Proof. The proof of the Soundness Theorem (6.21) for VS(l), by countermodel
preservation, is also a proof of soundness for VS(�, P), because the totality
assumption is never used. QED

6.5 Colored Variables from Connections as Support

Another approach to partial splitting substitutions is to require the support to
contain a particular subset of leaf-colored variables. This is a middle ground
between total and partial substitutions.

Definition 6.27 (Connection / Spanning Set)
A connection for a leaf sequent is a subset of the leaf sequent that consists of
two unifiable formulas. A spanning set of connections for a derivation is a set
that contains exactly one connection for each leaf sequent. a

Definition 6.28 (VS(�, C)-provability)
If D is a derivation of Γ , C is a spanning set of connections for D, and σ is a
ground and �-admissible splitting substitution for D, whose support is the
set of leaf-colored variables for C, and σ unifies all pairs of formulas in C, then
the pair 〈D,σ〉 is a VS(�, C)-proof of Γ . The resulting calculus is denoted by
VS(�, C). a

The following example shows that VS(�, C)-provability lies strictly between
VS(�)- and VS(�, P)-provability.

Example 6.29 (VS(�, C)-provability)
The following derivation is a simple variant of the derivation in Exam-
ple 6.24. Again, the partial splitting substitution {u23/a, u24/b} is closing
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and �-admissible together with the splitting relation {(34 4) @ u}. The set
of connections {R ` R,Qu ` Qa,Qu ` Qb} is spanning for the derivation, and
the leaf-colored variables for this set is {u23, u24}, which is the support of the
splitting substitution. Consequently, this is a VS(�, C)-proof.

1

R ` Qa∧Qb, R, Pu

` Qa∧Qb, R→ R, Pu

` Qa∧Qb, (R→ R) ∨ Pu

u23/a

23

Qu ` Qa

u24/b

24

Qu ` Qb

Qu ` Qa∧Qb

((R→ R) ∨ Pu)→ Qu ` Qa∧Qb

∀x
u

(((R→
1
R) ∨ Px)→ Qx

2
) ` Qa

3
∧Qb

4

u

(14 2) (34 4)

Like in Example 6.24, no ground splitting substitution with u1 in its support
may be closing and �-admissible, because the ground term assigned to
u1 must differ from either a or b. Thus, VS(�, C)-proofs are more liberally
defined than VS(�)-proofs. The derivation in Example 6.24 does not give rise
to a VS(�, C)-proof, because u1 must be in the support, so VS(�, P)-proofs
are more liberally defined than VS(�, C)-proofs. �

6.6 An Unsound Liberalization

It is temping to define an even more liberal notion of admissibility, which does
not include �β in the reduction ordering. Consider the following example.

Example 6.30 (Proof without Downward Closure)
Consider the following derivation.

2

Qu ` Qu

` Qu→ Qu

u34/a

34

Pu ` Pa

u35/b

35

Pu ` Pb

Pu ` Pa∧ Pb

` Pu→ Pa∧ Pb

` Qu→ Qu∧ (Pu→ Pa∧ Pb)

` ∃x
u

(Qx→ Qx
2

∧ (Px→
3
Pa
4

∧ Pb
5

))

u

(24 3)

2 3

(44 5)
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The root sequent is a simple variant of the valid root sequent ` ∃x(Px →
Pa∧ Pb) in Example 6.8. Ideally, the addition of Qx→ Qx should not affect
provability. The derivation is closed by the partial splitting substitution σ =

{u34/a, u35/b}, as indicated above the leaf sequents. A splitting relation for
σ must satisfy (44 5) @ u, but this is not l-admissible. The reason is that
�β is included in the reduction ordering. A cycle, which is evident from the
right-hand diagram, results from u l (24 3) � (44 5) @ u. Observe that if
�β was not included in the reduction ordering, then σ would be admissible.

It should be noted that if σ is a total splitting substitution, then any splitting
relation for σ is closed downwards. Then, because the support of a total
splitting substitution is the set of leaf-colored variables, σ(u2) must be some
ground term, and because σ(u34) = a and σ(u35) = b, it must be different
from either σ(u34) or σ(u35). Consequently, the splitting relation must also
satisfy (24 3) @ u. �

The previous example motivates the following definition of admissibility.

Definition 6.31 (l−-admissibility)
A splitting relation @ is l−-admissible if the transitive closure of the compo-
sition of @ and l is irreflexive. A splitting substitution σ is l−-admissible if
there is a l−-admissible splitting relation for it. a

The definition l−-admissibility leads to a corresponding definition of
VS(l−, P)-provability, which gives a proof for the derivation in Example 6.30.

Definition 6.32 (VS(l−, P)-provability)
If D is a derivation of Γ and σ is a closing and l-admissible splitting substitu-
tion for D, then the pair 〈D,σ〉 is a VS(l−, P)-proof of Γ . The resulting calculus
is denoted by VS(l−, P). a

Theorem 6.33 (Inconsistency of VS(l−, P))
The calculus VS(l−, P) is not sound. a

Proof. Consider the following sequent.

∀x
u
∀y
v

(Pxy
1

∨ (Qxa
3

∨
2
Ryb
4

)) ` ∃x
w

((Paa∨Qax∨ Rax)
5

∧ (Pbb∨Qbx∨ Rbx)
6

)

A countermodel is the term model M with domain {a, b} specified as follows.

> ⊥

Pab, Pba Paa, Pbb

Qba,Qab Qaa,Qbb

Rab, Rba Raa, Rbb
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The sequent, however, is VS(l−, P)-provable. Here is a table of the branches,
the connections and the splitting substitution σ.

branch connection σ

15 Puv ` Paa u15/a v15/a (w15)

16 Puv ` Pbb u16/b v16/b (w16)

235 Qua ` Qaw u235/a − w235/a
236 Qua ` Qbw u236/b − w236/a
245 Rvb ` Raw − v245/a w245/b
246 Rvb ` Rbw − v246/b w246/b

A l−-admissible splitting substitution is {(54 6) @ u, (54 6) @ v, (34 4) @ w},
which may be found from the following comparisons.

u15/a
u235/a

u16/b
u236/b

v15/a
v245/a

v16/b
v246/b

w235/a
w236/a

w245/b
w246/b

(54 6) @ u

(54 6) @ v

(34 4) @ v

The following diagram shows that the splitting relation is l−-admissible. If
�β is included in the reduction ordering, then it becomes cyclic, which means
that the splitting relation is not l-admissible.

u, v

(14 2)

(34 4)

w

(54 6)

Because VS(l) is sound, there is no total splitting substitution that is closing
and l-admissible. In this case, there are leaf-colored variables that are not
in the support of σ: w15 and w16. If any one of these are assigned terms, a
splitting relation must also satisfy (14 2) @ w, which gives a cycle. QED
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A natural question is whether the calculus VS(l−), where splitting substitu-
tions are required to be total, is sound. The totality requirement seems to imply
soundness, as in the previous example, but this is yet to be proved. Totality in
itself does not guarantee that a splitting relation is closed downwards (exam-
ples of this are given in Section 7.1), but it may be sufficient for proving that a
total splitting substitution is l-admissible if it is l−-admissible. Another way
of regaining soundness for VS(l−, P), although perhaps somewhat artificial,
may be to change the underlying definition of a splitting relation as follows.
Compared to ordinary splitting relations, this notion is very restrictive.

Definition 6.34 (∀-splitting Relation)
Let σ be a ground splitting substitution for a derivation. A binary relation @
from β-indices to variables is called a ∀-splitting relation for σ if the following
condition holds for colored variables uB and uC in the support of σ: If σ(uB) 6=
σ(uC), then (b4 c) @ u holds for all dual elements b ∈ B and c ∈ C. a
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Chapter 7

Generalizations

Several of the variable-splitting concepts have natural generalizations. One
reason for introducing generalizations at this point is that more general
notions and a higher level of abstraction is needed for proving soundness
without the assumption of conformity. For instance, the augmentation of
a splitting substitution, as defined in Definition 5.2 on page 67, is mostly
useful for derivations that conform to particular reduction orderings. The
generalizations are not only useful for establishing soundness in a different
way, but also interesting in their own right.

The natural generalization of a branch name is called a splitting set and leads to
colored variables that are labelled with splitting sets instead of branch names.
The natural generalization of an augmentation of a splitting substitution
is called a general augmentation and lead to a much more general way of
comparing colored variables than by branch name containment.

Splitting relations may be assumed to be closed downwards under�β without
affecting admissibility. This is explained and proved in the following section.
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7.1 Downward Closure of Splitting Relations

A splitting relation @ is closed downwards under �β if a�β b @ u, for all a,
b, and u, implies that a @ u. This is a natural property of splitting relations.
Intuitively, if (24 3)� (44 5) and (44 5) @ u, then it is necessary to expand
(24 3) to reach the β-formula (44 5), because the latter is a subformula of
the former. In this sense, to split a variable on some β-formula one implicitly
must split the variable on the �-smaller β-formulas. In most cases, a splitting
relation is closed downwards due to the splitting substitution at hand, like in
the following example.

Example 7.1 (Downward Closure of Splitting Relations 1)
Consider the following derivation together with a substitution σ =

{u34/b, u35/c}, as indicated above the leaf sequents. For σ to be a total or
closing splitting substitution, it must assign either of the terms a, b, or c to
the colored variable u2. Observe that a splitting relation in any case is closed
downwards.

u2/?

2

Pu ` Pa

u34/b

34

Pu ` Pb

u35/c

35

Pu ` Pc

Pu ` Pb∧ Pc

Pu ` Pa∧ (Pb∧ Pc)

∀x
u
Px ` Pa

2
∧ (Pb

4
∧
3
Pc
5

)
(24 3) u

(44 5)

Because b = σ(u34) 6= σ(u35) = c, a splitting relation @ for σ must at least
satisfy (4 4 5) @ u, and because the value of σ(u2) must be different from
either σ(u34) or σ(u35), a splitting relation must also satisfy (24 3) @ u. �

The following example shows that splitting relations are not necessarily closed
downwards.

Example 7.2 (Downward Closure of Splitting Relations 2)
Both of the following derivations are variants of the derivation in Example 6.30
(the only difference is that Q now does not have the variable u), and both are
proofs when taken together with a splitting substitution σ such that σ(u34) = a

and σ(u35) = b, as indicated above the leaf sequents. The splitting relations
are in both cases {(4 4 5) @ u}, which is not closed downwards because
(24 3)� (44 5), but not (24 3) @ u.
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7.1. Downward Closure of Splitting Relations

2

Q ` Q

` Q→ Q

u34/a

34

Pu ` Pa

u35/b

35

Pu ` Pb

Pu ` Pa∧ Pb

` Pu→ Pa∧ Pb

` Q→ Q∧ (Pu→ Pa∧ Pb)

` ∃x
u

(Q→ Q
2

∧ (Px→
3
Pa
4

∧ Pb
5

))

u

(24 3)

2 3

(44 5)

The second derivation is just a simple variant of the first derivation.

2

Q ` Q

` Q→ Q

u34/a

34

Pu ` Pa

u35/b

35

Pu ` Pb

Pu ` Pa∧ Pb

∀xPx ` Pa∧ Pb

` ∀xPx→ Pa∧ Pb

` Q→ Q
2

∧ (∀x
u
Px→

3
Pa
4

∧ Pb
5

)
(24 3)

2 3

u (44 5)

Observe that admissibility is preserved if the splitting relation is closed down-
wards, that is, if (24 3) @ u also holds. �

In the previous examples, the l-admissibility property is preserved if @ is
closed downwards under �β. The following lemma shows that this is true in
general.

Lemma 7.3 (Downward Closure and l-admissibility)
Let @ be a splitting relation such that ((@ ◦ l) ∪ �β)+ is irreflexive, and let
@↓ be the downward closure of @ under �β. Then, ((@↓ ◦ l) ∪ �β)+ is also
irreflexive. a

Proof. Suppose not. Then, there is a ((@↓ ◦ l) ∪ �β)-cycle

a1 < a2 < · · · < an

where < denotes either (@↓ ◦ l) or�β, and a1 = an. This cycle may be turned
into a ((@ ◦ l) ∪ �β)-cycle by replacing each (@↓ ◦ l)-pair with a (@ ◦ l)-
pair, possibly adding also a �β-pair, in the following way. If ak(@↓ ◦ l)ak+1,
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then ak @↓ u l ak+1, for some u. If ak @ u, then replace ak < ak+1 with
ak(@ ◦ l)ak+1. Otherwise, there is some b such that ak �β b @ u, in which
case replace ak < ak+1 with ak �β b and b(@ ◦ l)ak+1. QED

The following theorem is more general and states the equivalences between
the various admissibility properties.

Theorem 7.4 (Equivalent Closure Properties)
Let @ be a splitting relation. The following are equivalent.

1. ((@ ◦ l) ∪ �β)+ is irreflexive.

2. (@↓ ◦ l)+ is irreflexive, where @↓ is the downward closure of @ under
�β.

3. (@ ◦ l ↑)+ is irreflexive, where l ↑ is the upward closure of l under
�β. a

Proof. The equivalence between 1 and 2 is proved as follows. The equivalence
between 1 and 3 is proved similarly.

Suppose that 1 holds, and suppose for a contradiction that 2 does not hold.
Then, there is a (@↓ ◦ l)+-cycle

a1 < a2 < · · · < an

where < denotes (@↓ ◦ l) and a1 = an. Each pair ak < ak+1 may be turned
into either ak(@ ◦ l)ak+1 or ak �β b(@ ◦ l)ak+1, for some b, which gives a
((@ ◦ l) ∪ �β)-cycle, contradicting 1.

Suppose that 2 holds, and suppose for a contradiction that 1 does not hold.
Then, there is a ((@ ◦ l) ∪ �β)+-cycle

a1 < a2 < · · · < an

where < denotes either (@ ◦ l) or �β and a1 = an. Suppose without loss of
generality that an−1(@ ◦ l)an (at least on such pair must exists, because there
is no �β-cycle), and let i 6 n− 1 be the least number such that

ai �β ai+1 �β · · · �β an−1,

and replace this sequence with ai(@↓ ◦ l)an. Note that either i = 1 or
ai−1(@ ◦ l)ai. Continue with such replacements until i = 1. This gives a
(@↓ ◦ l)-cycle. QED
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7.2 Splitting Sets

The generalization of a branch name is a splitting set.

Definition 7.5 (Splitting Set)
A splitting set for a derivation is a dual-free set S of β0-indices for the derivation
that is closed downwards under �β0

. In other words, if b ∈ S and a � b,
where a is another β0-index, then a ∈ S. a

All branch names for a derivation are splitting sets, but not the other way
around. A splitting set for a derivation is, however, a branch name for a
permutation of the derivation. Splitting sets are, like branch names, written as
sequences of natural numbers.

Example 7.6 (Splitting Sets)
The following two derivations illustrate the notion of a splitting set.

2

` Pa

34

` Pb

35

` Pc

` Pb∧ Pc

` Pa
2

∧
1

(Pb
4

∧
3
Pc
5

)

– The β0-indices for the derivation are 2, 3, 4, and 5.

– The splitting sets for the derivation are ∅, 2, 3, 34, and 35.

– The sets 4 and 5 are not splitting sets, because they are not closed
downwards.

– The branch names 2, 34, and 35 refer to the branches of the derivation.

– The maximal splitting sets are 2, 34, and 35.

Because the derivation is balanced, the maximal splitting sets coincide with the
branch names that refer to the branches. This is not the case in the following
derivation, which is not balanced.
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13

Pa ` Pu,Qa∧Qb

14

Pa,Qu ` Qa∧Qb

Pa, Pu→ Qu ` Qa∧Qb

25

Pb, Pu→ Qu ` Qa

26

Pb, Pu→ Qu ` Qb

Pb, Pu→ Qu ` Qa∧Qb

Pa∨ Pb, Pu→ Qu ` Qa∧Qb

Pa
1

∨ Pb
2
, ∀x
u

(Px
3
→ Qx

4
) ` Qa

5
∧Qb

6

– The β0-indices for the derivation are 1, 2, 3, 4, 5, and 6.

– There are 33 = 27 splitting sets. These are the dual-free subsets of
{1, 2, 3, 4, 5, 6}.

– The set 12, for instance, is not a splitting set, because it is not dual-free.

– The branch names 13, 14, 25, and 26 refer to the branches of the deriva-
tion.

– The maximal splitting sets are 135, 136, 145, 146, 235, 236, 245, and 246.�

Until now, only colored variables with branch names have been considered.
The natural generalization is colored variables with splitting sets. Because a
colored variable is defined quite liberally, as a pair of a variable and a set
of β0-indices for a derivation, there is no need to generalize the notion of a
colored variable to encompass splitting sets.

Technical Remark. The definition of colored variables is very general to speak
consistently about different coloring mechanisms. Consider the following
derivation.

1

Pu `

23

Qa `
24

Qb `
Qa∨Qb `

Pu∨ (Qa∨Qb) `
∀x(Px

1
∨ (Qa

3
∨
2
Qb
4

)) `

– The branch names and splittings sets are 1, 2, 23, and 24.

– The only leaf-colored variable is u1.

– The colored variables for the derivation are u∅ and u1.

– The other colored variables labelled with splitting sets are u2, u23, and
u24.
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– The other colored variables are u3 and u4, which are labelled with sets
that are not splitting sets. (They are dual-free, but not closed downwards
under �β0

.)

7.3 Consistent and Complete Colored Variables

The most naive way of comparing colored variables is to check if one of the
sets of β0-indices is contained in the other. This is precisely what underlies
the definition (5.2) of an augmentation of a splitting substitution. The more
general way of comparing colored variables is the following.

Definition 7.7 (Consistent Colored Variables)
Let @ be a splitting relation. Two colored variables uS and uT are consistent if
there are no dual indices s ∈ S and t ∈ T such that (s4 t) @ u. a

Observe that if uS and uT are colored variables in the support of a splitting
substitution for which @ is a splitting relation, and uS and uT are consistent
colored variables, then σ(uS) = σ(uT ). The reason is that σ(uS) 6= σ(uT ) implies
that (s4 t) @ u for some s ∈ S and some t ∈ T , which means that uS and uT

are not consistent.

Definition 7.8 (Dual of Splitting Set)
The dual S4 of a splitting set S is the upward closure under �β0

of the set of
duals of the β0-indices in S. a

A good way of thinking about splitting sets and their duals is in terms of
information and choices. A large splitting set contains more information than
a smaller one, and if a splitting set represents choices of β0-indices, its dual
represents the discarded choices. The dual of a splitting set is not necessarily a
splitting set, but if a splitting sets becomes larger, its dual also becomes larger.

Example 7.9 (Dual of Splitting Set)
Consider the following outline of a formula.

(((
5

∨
3 6

) ∨
1 4

) ∨
0

(
7

∨
2 8

))>

The set of β0-indices is {1, 2, 3, 4, 5, 6, 7, 8}, and the relations between the indices
are shown in the following diagram, where the dual of the splitting set 13 is
highlighted in large triangles.
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4

4
1

4
3

5 6

4

4
2

7 8

The dual of 13 is {2, 4, 7, 8}, because the set of duals of the β0-indices in 13 is
{2, 4} and the upward closure of this set is {2, 4, 7, 8}. �

Definition 7.10 (Splitting Set Decides β)
A splitting set S decides (b4 c) if either b ∈ S, c ∈ S, or both b and c are in S4.
(Equivalently, a splitting set S decides (b4 c) if either b or c is in S4.) a

Intuitively, if S decides (b4 c), then a choice for (b4 c) has been made: Either
explicitly, if b ∈ S or c ∈ S, or implicitly, if (b4 c) has been discarded due to
some other choice.

Example 7.11 (Splitting Set Decides β)
Consider again the splitting set 13 from Example 7.9.

– 13 decides (14 2), because 1 is in 13.

– 13 decides (34 4), because 3 is in 13.

– 13 does not decide (54 6), because 5 is not in 13, 6 is not in 13, and it is
not the case that both 5 and 6 are in 134.

– 13 decides (74 8), because both 7 and 8 are in 134. �

For a given splitting relation, a colored variable may be complete in the sense
that the addition of more elements to its splitting set does not provide an
additional degree of freedom. This is made precise in the next definition.

Definition 7.12 (Complete Colored Variable)
Let @ be a splitting relation. A colored variable uS is complete if S decides all
(b4 c) such that (b4 c) @ u. a

Example 7.13 (Complete Colored Variables)
Consider again the following derivation.
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2

Pu ` Pa

34

Pu ` Pb

35

Pu ` Pc

Pu ` Pb∧ Pc

Pu ` Pa∧ (Pb∧ Pc)

∀x
u
Px ` Pa

2
∧
1

(Pb
4

∧
3
Pc
5

)

4

Pa

2

4
3

Pb

4

Pc

5

The colored variables for the derivation are u∅, u2, u3, u34, and u35. Whether
one of these is complete depends on the given splitting relation.

– If the splitting relation is empty, then all are trivially complete.

– If @ is {(24 3) @ u}, then all except u∅ are complete, because all splitting
sets except ∅ decide (24 3).

– If @ is {(24 3) @ u, (44 5) @ u}, then all except u∅ and u3 are complete.
For instance, u2 is complete, because 2 decides both (24 3) and (44 5).
The reason u3 is not complete is that (44 5) @ u and 3 does not decide
(44 5).

– If @ is {(44 5) @ u} (and thus not closed downwards under �β), then
only u34 and u35 are complete, because the splitting sets 34 and 35 are
the only ones that decide (44 5). �

The notions of consistent and complete colored variables require that a splitting
relation is given: Two colored variables are only consistent with respect to
a particular splitting relation, and a colored variable is only complete with
respect to a particular splitting relation.

The following lemma states an important relationship between complete and
consistent colored variables. Intuitively, if uC is complete and consistent with
uS, then C contains at least as much information as S. The lemma might seem
very technical, but it is very useful and facilitates the proofs of the Definedness
Lemma (7.17) and the Persistence Lemma (7.19) in the next section.

Lemma 7.14 (Complete and Consistent Colored Variables)
Let @ be a splitting relation that is closed downwards under �β, and let uC

be a complete colored variable that is consistent with a colored variable uS,
where S is a splitting set. If s ∈ S and (s4 t) @ u, then s ∈ C. a

Proof. Suppose that s ∈ S and (s4 t) @ u. Because uC is complete, C decides
(s4 t), so either s ∈ C, t ∈ C, or both s and t are in C4. It suffices to show
that the two latter options are impossible. Because uC and uS are consistent
colored variables, and s ∈ S, it is not the case that t ∈ C. Finally, suppose for
a contradiction that both s and t are in C4. Then, there is some β-element
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(c4 d), or (d4 c), such that c ∈ C and d is�-smaller than, or equal to, (s4 t).
Because @ is closed downwards under �β, it is also the case that (c4 d) @ u.
This situation may be illustrated as follows.

(c4 d)

c ∈ C d

(s4 t)

u

Because S is closed downwards under �β0
, d ∈ S, and then uC and uS are

not consistent colored variables, contrary to the assumption. QED

7.4 General Augmentations of Splitting Substitutions

The notion of an augmentation is now generalized to encompass variables
labelled with arbitrary splitting sets. To distinguish the two notions of augmen-
tations, the notations [·]? and σ? are used for variables labelled with arbitrary
splitting sets.

Definition 7.15 (General Augmentation of Splitting Substitution)
Let σ be a ground splitting substitution for a derivation, and let @ be a splitting
relation for σ. If uS is a variable labelled with a splitting set, then let [uS]?

denote the set of colored variables uC in the support of σ such that uS and
uC are consistent colored variables. Like in Definition 5.2, if [uS]?σ contains
at most one element, then uS is said to be a secured colored variable, and if
[uS]?σ contains exactly one element, then uS is said to be a determined colored
variable. Let σ? be a function, called the general augmentation of σ, from secured
colored variables to ground terms, defined as follows. Suppose without loss
of generality that there is a constant d in the codomain of σ.

– If [uS]?σ is empty, let σ?(uS) = d.

– If [uS]?σ is a singleton whose only element is t, let σ?(uS) = t. a

Observe that [uS] ⊆ [uS]?, because S ⊆ T implies that uS and uT are consistent
colored variables.

In contrast to ordinary augmentations, a general augmentation may be unde-
fined for leaf-colored variables. This is because a leaf-colored variable may be
unsecured, in which case the general augmentation is undefined for it.
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Example 7.16 (General Augmentation)
The following outline of a derivation illustrates that a general augmentation
may not be defined for all leaf-colored variables for a derivation. Suppose
that σ is the splitting substitution given above the leaf sequents, and that the
splitting relation for σ is {(34 4) @ u}.

u1/u1

1

Pu ` , ∧

u23/a

23

Pu ` ,

u24/b

24

Pu ` ,

Pu ` , ∧

Pu ` ∧ , ∧

∀xPx `
1

∧
2
,
3

∧
4

In this case, the colored variable u1 is not secured, because

[u1]?σ = {u23, u24}σ = {a, b}.

Consequently, the general augmentation of σ is not defined for u1. �

The Definedness Lemma (5.4) in Section 5.1 says that ordinary augmentations
are defined for colored variables for conforming derivations. The correspond-
ing result, formulated in the following Definedness Lemma, is that general
augmentations are defined for all complete colored variables.

Lemma 7.17 (Definedness Property for General Augmentations)
Let σ be a ground splitting substitution for a derivation, let @ be a splitting
relation for σ that is closed downwards under �β, and let σ? be the gen-
eral augmentation of σ. Then, all complete colored variables uB are secured.
Consequently, σ? is defined for all complete colored variables. a

Proof. Suppose for a contradiction that uB is not secured. Then, there are
two leaf-colored variables, uS and uT from [uB]?, that are assigned different
ground terms by σ, such that uB is consistent with both uS and uT . Because
@ is a splitting relation for σ, there are dual elements s and t in S and T ,
respectively, such that (s4 t) @ u. By Lemma 7.14, both s and t are in B, which
is impossible. QED

The Persistence Lemma (5.5) in Section 5.1 says that ordinary augmentations
are persistent in the sense that if the branch name of a colored variables is
extended, then the new colored variable is assigned the same value as the
old, if any. The situation for general augmentations is more subtle. The reason
is that when the splitting set of a secured colored variable is extended, then
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the new colored variable may be assigned the default value by the general
augmentation.

Example 7.18 (Loss of Persistence)
The following is an outline of a derivation. Suppose that σ is the splitting
substitution given above the leaf sequents, and that the splitting relation for σ
is {(14 2) @ u, (34 4) @ u}.

u13/a

13

Pu ` ,

−

14

Pu ` ,

Pu ` , ∧

−

23

Pu ` ,

u24/b

24

Pu ` ,

Pu ` , ∧

Pu ` ∧ , ∧

∀xPx `
1

∧
2
,
3

∧
4

The support of σ contains only u13 and u24, and u1 is a secured colored
variable, because

[u1]?σ = {u13}σ = {a}.

Consequently, σ?(u1) = a. However, the general augmentation σ? assigns the
default value to u14, which may be different from a, because

[u14]?σ = ∅.

This means that persistence does not hold for general augmentations like it
does for ordinary augmentations. �

However, general augmentations are persistent for complete colored variables,
as the following Persistence Lemma shows.

Lemma 7.19 (Persistence Property for General Augmentations)
Let σ be a ground splitting substitution for a derivation, let @ be a splitting
relation for σ that is closed downwards under �β, let σ? be the augmentation
of σ, and let uS and uT be complete and consistent colored variables. Then,
σ?(uS) = σ?(uT ). (The case where S ⊆ T is a special case, for then uS and uT

are consistent colored variables.) a

Proof. Suppose that uS and uT are consistent colored variables, and suppose
for a contradiction that σ?(uS) 6= σ?(uT ). By definition (7.15) of σ?, one of uS

and uT must be determined; otherwise, both are assigned a default constant
d. So, suppose that uS is determined. Then, there is a leaf-colored variable uB

that is consistent with uS such that σ?(uS) = σ(uB). It may not be the case that
uB is consistent with uT , for then σ?(uT ) would equal σ(uB). Consequently,
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there is some (b4 t) such that (b4 t) @ u, where t ∈ T and b ∈ B. Because uS

is complete and consistent with uT , Lemma 7.14 implies that t ∈ S. But then,
contrary to assumption, uB and uS are not consistent colored variables.QED

7.5 Countermodel Preservation without Permutation

The purpose of this section is to show that the Countermodel Preservation
Lemma (6.20), and thus soundness of VS(l, P), may be proved via counter-
model preservation without the assumption that a derivation conforms to an
irreflexive reduction ordering. The proof roughly corresponds to expanding
the formulas in an ordering that conforms to C while simultaneously showing
that countermodels are preserved.

Lemma 7.20 (Countermodel Preservation without Conformity)
Let M be a countermodel for the root sequent of a derivation, and let σ be a
ground and l-admissible splitting substitution for the derivation. Then, there
is a total extension σ ′ of σ and a leaf sequent Γ such that M |= Γ̂σ ′. a

Proof. Let C be the reduction ordering induced by an l-admissible splitting
relation @ for σ, and let σ? be the general augmentation of σ, but restricted
to complete colored variables. (The reason for the restriction to complete
colored variables is to be able to apply the Definedness Lemma (7.17) and the
Persistence Lemma (7.19).) By Lemma 7.3 we may assume that @ is closed
downwards under �β.

Overview. By repeatedly choosing C-minimal β-formulas, a sequence of ap-
proximations to a maximal splitting set for the derivation is constructed. For
each approximation, a set of formulas is defined, and it is shown that M is
a countermodel for all of these sets. In the end, a maximal splitting set for
the derivation is obtained, which corresponds to exactly one branch of the
derivation, with a leaf sequent Γ . The sets of formulas associated with the
splitting sets are defined in such a way that M being a countermodel for the
final set of formulas implies that there is total extension σ ′ of σ such that
M |= Γ̂σ ′, which is the desired conclusion.

Construction. The increasing sequence of splitting sets S0, S1, S2, . . . , for the
derivation is defined as follows. Let S0 be the empty splitting set, and suppose
that Sk is already defined. Let β be a C-minimal β-index for the derivation
that is not decided by Sk. In other words, neither β1 nor β2 are in Sk and it is
not the case that β1 and β2 are in S4k .

Let Sk+1 =

{
Sk ∪ {β1} if M |= β̂Sk

1 σ
?, and

Sk ∪ {β2} otherwise.
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For each step in the construction, one of the “remaining” β-indices is chosen
and one of its β0-indices is added to Sk to obtain Sk+1. The other β0-index,
together with all of its �-greater indices, belong to S4k+1.

For each splitting set Sk, a set Γk of formulas is defined as follows. Let Γk be
the union of the root sequent and Sk closed under α-, γ-, and δ-rules, but
limited to formulas in the derivation. (In other words, Γk is the upward closure
of the union of the root sequent and Sk under �1 for all formulas of type
not β that are expanded in the derivation. All �-maximal formulas in Γk are
either atomic or of type β.) Countermodels are preserved under α-, γ-, and
δ-rules, so if M is a countermodel for the union of the root sequent and Sk,
then M is also a countermodel for the closure. Notice that when a new set
Sk+1 is constructed, then another set Γk+1 is also implicitly defined. Recall
that Γ̂Sk

k denotes Γk where all variables u have been replaced with uSk .

Countermodel Preservation. The countermodel property, which is proved by
induction on k, is that

M |= Γ̂Sk

k σ?

holds for each splitting set Sk in the construction. The base case is that
M |= Γ̂S0

0 σ
?, which holds because M is a countermodel for the root sequent

and countermodels are preserved under α-, γ-, and δ-rules. For the induction
step, suppose that M |= Γ̂Sk

k σ?. It suffices to show that M |= Γ̂
Sk+1

k+1 σ
?. The

essential step is to show that all critical colored variables in β̂Sk are complete.
To this end, suppose that uS is a critical colored variable in β̂Sk , and suppose
that (s4 t) @ u. Then, Sk must be shown to decide (s4 t). By the definition of
the reduction ordering, and because ul β, it must be the case that (s4 t)C β.
Because β is assumed to be a C-minimal β-index for the derivation that is not
decided by Sk, it must be the case that Sk decides (s4 t). Consequently, uSk

is a complete colored variable. Because all critical colored variables in β̂Sk are
complete, the Definedness Lemma (7.17) implies that σ? is defined for all of
the critical colored variables, and then the β0-choice Lemma (6.15) implies that
either M |= β̂Sk

1 σ
? or M |= β̂Sk

2 σ
?, and consequently, that M |= Γ̂Sk

k+1σ
?. Finally,

the Persistence Lemma (7.19) implies the desired conclusion, which is that
M |= Γ̂

Sk+1

k+1 σ
?.

Conclusion. If Sk is the final, maximal splitting set, then there is exactly one
branch B of the derivation such that B ⊆ Sk, and if Γ is the leaf sequent of
this branch, then Γ ⊆ Γk. Because Sk is a maximal splitting set, each colored
variable uSk in Γ̂Sk

k is complete and, consequently, in the domain of σ?. Because
σ? may be undefined for some of the leaf-colored variables for the derivation,
which may not be complete, a total extension σ ′ of σ is defined as follows. For
all variables uB in Γ̂ , let σ ′(uB) = σ?(uSk). Because σ? is defined for all uSk , σ ′

is a total splitting substitution. To see that σ ′ extends σ, suppose that uB is in
the support of σ. Because B ⊆ Sk, uB and uSk are consistent colored variables,
so uB ∈ [uSk ]? and σ?(uSk) = σ(uB). Because Γ ⊆ Γk and M |= Γ̂Sk

k σ?, it is the
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case that M |= Γ̂Skσ?. The desired conclusion, that M |= Γ̂Skσ ′ holds, follows
from the fact that σ ′(uB) = σ?(uSk) for all colored variables uB in Γ̂Sk . QED

Technical Remark. With one proviso, this proof is equivalent to proving a
countermodel preservation property for a conforming permutation of the
derivation. The proviso is that the derivation must be sufficiently expanded.
This is the essence of the restriction to complete colored variables.

Example 7.21 (Countermodel Preservation)
Consider again the derivation of ∀x(Pxa∨ Pxb) ` ∃x(Pax∧ Pbx) from Exam-
ple 4.28.

13

Pua ` Pav
14

Pua ` Pbv
Pua ` Pav∧ Pbv

23

Pub ` Pav
24

Pub ` Pbv
Pub ` Pav∧ Pbv

Pua∨ Pub ` Pav∧ Pbv

Pua∨ Pub ` ∃x(Pax∧ Pbx)

∀x
u

(Pxa
1

∨ Pxb
2

) ` ∃x
v

(Pax
3

∧ Pbx
4

)

Let M be a term model with domain {a, b}, which is a countermodel for the
root sequent, specified as follows.

> ⊥

Paa Pab

Pbb Pba

Let σ be the admissible, but not closing, splitting substitution given by the
following table.

w u13 u14 u23 u24 v13 v14 v23 v24

σ(w) a b a b a a a a
u

(14 2)

v

(34 4)

The admissibility of σ is given by the splitting relation @= {(3 4 4) @ u}.
The relations between the formulas are displayed in the right-hand diagram.
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Observe that the derivation is not conforming, because (34 4) is expanded
above (14 2). By following the preceding proof, it is possible to single out a
leaf sequent Γ such that M |= Γ̂σ. First, the general augmentation σ? of σ is
given in the following table.

w u∅ u1 u2 u3 u13 u23 u4 u14 u24 v∅ v1 v2 v3 v4 v13 v14 v23 v24

σ?(w) − − − a a a b b b a a a a a a a a a

For instance, σ? is not defined for u∅, u1 nor u2, because neither are secured.
(No restriction to complete colored variables is needed, because all secured
variables are complete in this case.)

For k = 0 :

– S0 is by definition the empty set.

– Γ0 equals {(Pua
1

∨ Pub
2

)>, (Pav
3

∧ Pbv
4

)⊥, . . .}.

– Γ̂S0

0 equals {(Pu∅a
1

∨ Pu∅b
2

)>, (Pav∅
3

∧ Pbv∅
4

)⊥, . . .}.

– Γ̂S0

0 σ
? equals {(Pu∅a

1
∨ Pu∅b

2
)>, (Paa

3
∧ Pba

4
)⊥, . . .}.

– Observe that the only colored variables left after the application of σ? is
u∅ and that M |= Γ̂S0

0 σ
?.

For k = 1 :

– Neither (142) nor (344) is decided by S0, but only (344) is C-minimal.

– M |= Pba
4

⊥, so S1 = S0 ∪ {4} = {4}.

– Γ1 equals {(Pua
1

∨ Pub
2

)>, Pbv
4

⊥, . . .}.

– Γ̂S1

1 equals {(Pu4a
1

∨ Pu4b
2

)>, Pbv4
4

⊥
, . . .}.

– Γ̂S1

1 σ
? equals {(Pba

1
∨ Pbb

2
)>, Pba

4

⊥, . . .}.

– Observe that there are no colored variables left after the application of
σ? and that M |= Γ̂S1

1 σ
?.

For k = 2 :

– (14 2) is the only element not decided by S0.

– M |= Pbb
2

>, so S2 = S1 ∪ {2} = {24}.

– Γ2 equals {Pub
2

>, Pbv
4

⊥, . . .}.

– Γ̂S2

2 equals {Pu24b
2

>
, Pbv24

4

⊥
, . . .}.

– Γ̂S2

2 σ
? equals {Pbb

2

>, Pba
4

⊥, . . .}.

112



7.6. Proof Transformations and Totality

The construction is finished with S2 = {24}, which is a maximal splitting set
that corresponds to exactly one branch of the derivation. Note that the order
in which the path 24 is constructed (v  4  u  2) is different from the
intrinsic order of the corresponding branch (u v 2 4). �

7.6 Proof Transformations and Totality

An alternative approach for proving soundness of VS(�, P) is to transform a
VS(�, P)-proof into a VS(�)-proof, which must have a total splitting substi-
tution. This transformation may be done by balancing the original derivation.
Although this may blow up the size of the derivation, it provides another
proof of the Soundness Theorem (6.25) for VS(�, P).

Example 7.22 (Balancing Gives VS(�)-proof)
The derivation in Example 6.24 is closed by a partial and �-admissible
substitution, but there is no total splitting substitution with the same property.
The following derivation is the result of balancing the derivation.

u13/a

13

Pu ` Qa, Pu

u14/b

14

Pu ` Qb, Pu

Pu ` Qa∧Qb, Pu

` Qa∧Qb, Pu→ Pu

u23/a

23

Qu ` Qa

u24/b

24

Qu ` Qb

Qu ` Qa∧Qb

(Pu→ Pu)→ Qu ` Qa∧Qb

∀x
u

((Px→
1
Px)→ Qx

2
) ` Qa

3
∧Qb

4

The total splitting substitution {u13/a, u14/b, u23/a, u24/b} is now total, closing
and �-admissible. �

As noted in Section 3.6 on permutations, the balancing of a derivation may be
seen as a special case of permutation. Therefore, the Proof Invariance Lemma
(5.7) from Section 5.3 applies for balancing as well as for permuting, and
derivations may safely be assumed to be balanced.

Lemma 7.23 (Balanced Derivations have Complete Colored Variables)
Let D be a balanced derivation, let σ be a splitting substitution for D, and
let @ be a splitting relation for σ. Then, all leaf-colored variables for D are
complete. a
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Proof. Let uB be a leaf-colored variable for D such that (s4 t) @ u. It suffices
to show that B decides (s 4 t), but because the derivation is balanced, B
decides all formulas of type β. (If B does not contain s or t, then, because the
derivation is balanced, s and t are both in B4.) QED

If the leaf-colored variables for a derivation are all complete, then there is
essentially no difference between partial and total splitting substitutions.
The reason is that a partial splitting substitution may be extended to a total
splitting substitution without affecting either closability nor admissibility
and without expanding additional formulas. A consequence of the previous
lemma is that the distinction between partial and total substitutions becomes
superfluous for balanced derivations. If a partial splitting substitution is given,
then the general augmentation of it is the natural total extension to consider.
This is used in the following, alternative, proof of the Soundness Theorem
(6.25) for VS(�, P).

Proof (of Theorem 6.25). Let 〈D,σ〉 be a VS(�, P)-proof. It suffices to show
that there is a VS(�)-proof of the same root sequent, for then, by the Sound-
ness Theorem (5.10) for VS(�), the root sequent is valid. By the Proof In-
variance Lemma (5.7), we may assume that D is balanced. Let σ? be the
general augmentation of σ, restricted to the leaf-colored variables of D. By
Lemma 7.23, all the leaf-colored variables of D are complete, and by the De-
finedness Lemma (7.17) and that the other colored variables are disregarded,
σ? is a total splitting substitution for the derivation. For 〈D,σ?〉 to be the
desired VS(�)-proof, it suffices to show that σ? is closing and �-admissible:
It is closing because σ? is an extension of σ. By assumption, σ is�-admissible,
so there is a �-admissible splitting relation @ for σ. It suffices to show that
@ is a splitting relation for σ?, for then σ? is also �-admissible. To this end,
suppose that σ?(uS) 6= σ?(uT ). By the Persistence Lemma (7.19), uS and uT are
not consistent colored variables, so there are dual elements s ∈ S and t ∈ T
such that (s4 t) @ u. This concludes the proof. QED
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Chapter 8

Various Topics and Loose Ends

This chapter contains several interrelated topics related to variable splitting.
Except for Sections 8.1–8.5, the sections may be read independently from each
other.

8.1 Context Splitting

A distinctive feature of variable splitting is that the expansion of β-formulas
may provide an additional degree of freedom when it comes to closing a
derivation and finding a proof. In ordinary free-variable calculi, without vari-
able splitting, it is rather the expansion of γ-formulas that provides additional
possibilities for closure. For variable splitting, both the expansion of γ- and
β-formulas may give rise to new closing and admissible splitting substitutions.
A typical situation is where the expanded β-formula is in the context of the
connection formulas; thereby the name context splitting. The following example
discusses the valid sequent

Pa
1

∧ Pb
2
, ∀x
u

(Px
3
→ Qx

4
) ` Qa

5
∧Qb

6

and illustrates this.

Example 8.1 (Context Splitting)
The following derivation of a valid root sequent may be closed in two dif-
ferent ways because of the leftmost branch, which may be closed by either
u3/a or u3/b, depending on the choice of unifiable formulas. Both splitting
substitutions {u3/a, u45/a, u46/b} and {u3/b, u45/a, u46/b} are closing for the
derivation, but none of them are admissible. A splitting relation for either of
them must satisfy (34 4) @ u, which together with ul (34 4) gives a cycle.
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u3/a or u3/b

3

Pa, Pb ` Pu,Qa∧Qb

u45/a

45

Pa, Pb,Qu ` Qa

u46/b

46

Pa, Pb,Qu ` Qb

Pa, Pb,Qu ` Qa∧Qb

Pa, Pb, Pu→ Qu ` Qa∧Qb

Pa, Pb, ∀x(Px→ Qx) ` Qa∧Qb

Pa
1

∧ Pb
2
, ∀x
u

(Px
3
→ Qx

4
) ` Qa

5
∧Qb

6

Observe the effect of expanding the formula Qa∧Qb in the leftmost branch.
The two new branches may be closed by u35/a and u36/b, respectively.

u35/a

35

Pa, Pb ` Pu,Qa

u36/b

36

Pa, Pb ` Pu,Qb
Pa, Pb ` Pu,Qa∧Qb

u45/a

45

Pa, Pb,Qu ` Qa

u46/b

46

Pa, Pb,Qu ` Qb
Pa, Pb,Qu ` Qa∧Qb

Pa, Pb, Pu→ Qu ` Qa∧Qb

Pa, Pb, ∀x(Px→ Qx) ` Qa∧Qb

Pa
1

∧ Pb
2
, ∀x
u

(Px
3
→ Qx

4
) ` Qa

5
∧Qb

6

The splitting substitution {u35/a, u36/b, u45/a, u46/b} is both closing and ad-
missible, due to the admissible splitting relation {(54 6) @ u}. The expansion
of Qa∧Qb therefore made it possible to close the derivation in an admissible
way, but without providing additional unifiable formulas. �

Several of the topics and examples in this chapter are related to context
splitting.

8.2 Nonground Splitting Substitutions

The various definitions of admissibility (Definitions 4.24, 6.2, 6.10, and 6.31)
and provability (Definitions 4.25, 6.3, 6.11, 6.23, and 6.32) are all based on the
assumption that splitting substitutions are ground. Ground splitting substitu-
tions are nice for reasoning about variable splitting and for proving soundness,
but there are several examples that suggest advantages of nonground split-
ting substitutions. The reason that admissibility and provability are defined
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only for ground splitting substitutions is that the definitions of these rely
on splitting relations, which in turn are defined only for ground splitting
substitutions. A first step toward a definition of admissibility for nonground
splitting substitutions is therefore to extend the definition of splitting relations
to the nonground case. It is, however, not clear how to do this in a good way.

Recall that a splitting relation @ for a ground splitting substitution σ satisfies
the condition that if two colored variables uB and uC in the support of σ
are assigned different values by σ, then there are dual elements b ∈ B and
c ∈ C such that (b4 c) @ u. Because σ is ground, it is clear what it means
for two colored variables to be assigned different values. For nonground
splitting substitutions, this condition is too simple. For example, a nonground
substitution may assign different, but unifiable, terms to two colored variables.
To understand the difficulty, consider the following example, the core of which
is similar to the context splitting example (8.1).

Example 8.2 (Advantage of Nonground Splitting Substitutions)
The following is a derivation of a valid root sequent for which there are no
ground splitting substitutions that are both closing and admissible. A ground
splitting substitution must assign some term to the colored variables u3 and v3

to be closing, and no matter which term this is, the resulting splitting relation
gives a cyclic reduction ordering: The rightmost branches, 45 and 46, are
closed by the splitting substitution {u45/a, u46/b}, which is admissible because
of the splitting relation {(54 6) @ u}, but if the leftmost branch is closed by
mapping u3 and v3 to the term a, then, because u3 and u46 are assigned
different ground terms, the splitting relation must also satisfy (344) @ u. This
results in a cyclic reduction ordering, because ul (34 4). A similar situation
arises if the leftmost branch is closed by mapping u3 and v3 to the term b.

u3/v3 or v3/u3

3

Pv ` Pu,Qa∧Qb

u45/a

45

Pv,Qu ` Qa

u46/b

46

Pv,Qu ` Qb
Pv,Qu ` Qa∧Qb

Pv, Pu→ Qu ` Qa∧Qb

Pv, ∀x(Px→ Qx) ` Qa∧Qb

∀x
v
Px, ∀x

u
(Px
3
→ Qx

4
) ` Qa

5
∧Qb

6

If nonground substitutions are allowed, then the leftmost branch may be
closed by either u3/v3 or v3/u3, but then there is the question, and open
problem, of whether this should be admissible. A source of difficulty is that
u3 is consistent with two colored variables that are assigned different values.
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Because u3 is consistent with u45, which is assigned the term a, and u46,
which is assigned the term b, it is natural to ask which value u3 should
receive. In terms of equations, the conflict may be summarized as follows.

a ≈ u45 ≈ u3 ≈ u46 ≈ b

This particular problem only seems to arise for imbalanced derivations. An
expansion of Qa∧Qb in the leftmost branch results in the following balanced
derivation.

v35/a

u35/a

35

Pv ` Pu,Qa

v36/b

u36/b

36

Pv ` Pu,Qb
Pv ` Pu,Qa∧Qb

u45/a

45

Pv,Qu ` Qa

u46/b

46

Pv,Qu ` Qb
Pv,Qu ` Qa∧Qb

Pv, Pu→ Qu ` Qa∧Qb

Pv, ∀x(Px→ Qx) ` Qa∧Qb

∀x
v
Px, ∀x

u
(Px
3
→ Qx

4
) ` Qa

5
∧Qb

6

Observe that this is a free-variable variant of the context splitting example (8.1)
(Pa∧ Pb is replaced with ∀xPx). A ground and closing splitting substitution
is given above the leaf sequents, and it is admissible because of the splitting
relation {(54 6) @ u, (54 6) @ v}. �

The previous example suggests that it is better to compare terms with respect
to unifiability instead of equality in a definition of splitting relations for
nonground splitting substitutions. The next example shows that the naive way
of doing this is not sound.

Example 8.3 (Unsound Definition of Splitting Relation)
Suppose that the definition of a splitting relation is changed in the following
way.

Let σ be a splitting substitution for a derivation. A binary relation
@ from β-indices to variables is called a splitting relation for σ if
the following condition holds for leaf-colored variables uB and uC:
if σ(uB) and σ(uC) are not unifiable, then there are dual elements
b ∈ B and c ∈ C such that (b4 c) @ u.

Consider the following derivation. The root sequent is not valid, and the term
model with domain {a, b}, specified on the right-hand side, is a countermodel.
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u1/a

1

Pa ` Pu

` Pa→ Pu

u23/v23

23

Qu ` Qv

` Qu→ Qv

v24/b

24

Rv ` Rb

` Rv→ Rb

` Qu→ Qv∧ Rv→ Rb

` Pa→ Pu∧ (Qu→ Qv∧ Rv→ Rb)

` ∃y((Pa→ Pu) ∧ (Qu→ Qy∧ Ry→ Rb))

` ∃x∃y((Pa→
1
Px) ∧ ((Qx→

3
Qy) ∧

2
(Ry→

4
Rb)))

> ⊥

Pa Pb

Qa Qb

Ra Rb

A nonground, closing splitting substitution σ is given above the leaf sequents.
The empty relation is a splitting relation for the following reasons.

– σ(u1) = a and σ(u23) = v23 are unifiable.

– σ(v23) = v23 and σ(v24) = b are unifiable.

If admissibility is defined in terms of this notion of a splitting relation, such
that the root sequent is provable, then the resulting calculus is unsound. �

Instead of starting with a definition of splitting relations for nonground
splitting substitutions, it is possible to define admissibility and provability
for nonground splitting substitutions directly. A fail-safe way is to say that a
nonground splitting substitution σ is admissible if it is groundable in the sense
that there is a substitution σ ′ such that the composition of σ and σ ′ is ground
and admissible. Two questions naturally come to mind.

– Is it possible to characterize this notion of admissibility in a simpler, but
equivalent, way, without referring to ground substitutions?

– Is there a good definition of admissibility for nonground splitting substi-
tutions that is strictly more liberal than admissibility for ground splitting
substitutions? In particular, one that gives rise to proofs, like in Exam-
ple 8.2, without having to balance the derivations? (A good definition is
for instance one that is not stated in terms of balanced derivations.)

These are still open problems, and no definitive answers are presented here.
The following ideas, however, may be fruitful for further research.

A possible solution to the first problem is to extend the definition of a general
augmentation to nonground splitting substitutions (which was defined for
ground splitting substitutions in Definition 7.15). With an appropriate notion
of a secured colored variable for a derivation, it may be possible to require
that all the leaf-colored variables of a derivation are secured. In this way, the
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general augmentation may give rise to a ground splitting substitution. (It
seems too strict to require that leaf-colored variables are complete, as shown
in Section 8.8.)

Another idea is to define splitting substitutions in terms of directed acyclic
graphs, analogous to how this is done for ordinary substitutions [BS01]. If
variables and function symbols are represented as nodes, and substitutions
are represented as equivalence relations on nodes, it may be possible to
label the edges of the equivalence relation with splitting sets to capture
splitting substitutions. This may not only provide a more liberal definition
of admissibility, but also be the basis of efficient unification algorithms for
variable splitting.

A final idea is to define the application of a splitting substitution to colored
terms in a more general way. The application of a splitting substitution σ to
a colored term is normally done by replacing each colored variable uS with
σ(uS). A more general approach, for a given splitting relation, is to replace
uS with σ(uT ), given that uS and uT are consistent colored variables. For the
sake of discussion, let this be referred to as the general application of a splitting
substitution. There are two interesting aspects of general applications that
should be taken into consideration. The first is that a colored variable may
be consistent with colored variables that are assigned different values, as in
the context splitting example (8.1), and that this should be prohibited for
general applications to be well-defined. The second is that it seems very useful
to require general applications to be idempotent. This is illustrated in the
following example.

Example 8.4 (General Application of Splitting Substitutions)
The root sequent of the following derivation is valid.

u1/fv1

1

Pu ` Qgu, Pfv

v2/gu2

2

Qv, Pu ` Qgu

Pu, Pfv→ Qv ` Qgu

Pfv→ Qv ` Pu→ Qgu

Pfv→ Qv ` ∃x(Px→ Qgx)

∀
v
x(Pfx

1
→ Qx

2
) ` ∃x

u
(Px→ Qgx)

A closing, nonground splitting substitution σ = {u1/fv1, v2/gu2} is given above
the leaf sequents. The result of the general application of σ depends on a
particular splitting relation. If the splitting relation is {(14 2) @ u}, then the
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result of the general application of σ, one and two times, is the following.

u1  fv1  fgu2

u2  u2  u2

v1  gu2  gu2

v2  gu2  gu2

For instance, the general application of σ to u2 gives u2, because u1 and
u2 are not consistent colored variables. The general application of σ to v1

gives gu2, because v1 and v2 are consistent colored variables and σ(v2) = gu2.
The general application of σ to the results of the first general application, in
particular that the general application of σ to fv1 gives fgu2, shows that the
general application is not idempotent. (Idempotence would imply that two
general applications of σ gave the same result as one.) However, the closing
splitting substitution

{u1/fgu2, v1/gu2, v2/gu2}

gives an idempotent general application. Incidentally, it seems to be the case
that idempotence implies the existence of ground splitting substitutions. In
this case, if u2 is replaced with a constant term, the result is the ground
splitting substitution

{u1/fga, u2/a, v1/ga, v2/ga},

for which {(14 2) @ u} is still an admissible splitting relation. Because u1 and
u2 are not consistent colored variables, there is no problem to have u1/fgu2

in a splitting substitution, unlike for ordinary substitution, where this would
give an occur-check failure. If the splitting relation is empty, however, the
results of several general applications of σ is the following.

u1  fv1  fgu2  fgfv1 · · ·
u2  fv1  fgu2  fgfv1 · · ·
v1  gu2  fgfv1  fgfgu2 · · ·
v2  gu2  fgfv1  fgfgu2 · · ·

Consequently, the empty splitting relation does not give rise to an idempotent
general application of this splitting substitution. This is to be expected, because
an empty splitting relation does not warrant any independent treatment of
colored variables at all. �

8.3 Alternative Coloring Mechanisms

The definition of variable splitting depends on the underlying coloring mech-
anism, the systematic method of coloring variables. The most general coloring
mechanism is the one where variables are colored with branch names. One
of the motivations for investigating alternative coloring mechanisms is the
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problem of how to represent branch names, or relevant parts of branch names,
for the definition and implementation of efficient proof search algorithms. The
coloring mechanisms may be divided into the following two categories.

– Branch-based coloring mechanisms (for example [AW05, AW07a]).
– Connection-based coloring mechanisms (for example [WA03, Bib87]).

All approaches, except from the one in this thesis and [AW07a], are restricted
in the sense that variables may be colored in the same way even though they
occur in different branches. It is a restriction because when more variables are
colored in the same way, it becomes harder to close derivations.

The simplest branch-based coloring mechanism is based on coloring vari-
ables with branch names. This was introduced in Section 4.2 and investigated
in detail in Chapters 4–7. Another branch-based coloring mechanism is the
variable-pure coloring mechanism that was presented in Section 4.5 to define
a precise correspondence with variable-pure derivations. Yet another branch-
based way of coloring variables is to use only parts of branch names. For
instance, in [AW05], a variable u is not colored with a branch name B, but the
result of removing all indices i from B such that u� i. For �-admissibility,
these indices do not contribute to an additional freedom to instantiate vari-
ables, because u � (i 4 j) and (i 4 j) @ u immediately results in a cyclic
reduction ordering, so it is harmless to remove them before coloring variables.
For l-admissibility, however, this is not the case (for the reason that it is
possible for @ to be l-admissible even though both ul (i4 j) and (i4 j) @ u
hold).

In connection-based coloring mechanisms, a variable is colored in a way that
is dependent on the particular connection in which the variable occurs. Recall
that a connection for a leaf sequent is a subset of two unifiable formulas, and
that a spanning set of connections for a derivation is a set that contains exactly
one connection for each leaf sequent. The starting point for a connection-based
coloring mechanism is a spanning set of connections, and the variables in a
connection are colored in a way that depends on the connection. For example,
there are two possible connections for the following sequent.

Pu ` Pa, Pb

A connection-based coloring mechanism may result in two different colorings
of the variable u, depending on the choice of connection. There are two main
examples of connection-based coloring mechanisms. The first is the coloring
mechanism from [WA03], and the second is the coloring mechanism from
Splitting by Need in [Bib87]. These are the topics of the next two sections. In
contrast to the branch-based coloring mechanisms, they have in common
that the phenomenon of context splitting, as explained in Section 8.1, never
occurs. The expansion of β-formulas in the context does not provide additional
freedom to close derivations. As this is a desirable property, this may be seen
as a disadvantage of connection-based coloring mechanisms.

122



8.4. Pruning

8.4 Pruning

The coloring mechanism from [WA03] is based on the so-called pruning of
splitting sets. Initially, all the formulas in the root sequent are associated with
an empty splitting set, and whenever a β-formula is expanded, the indices of
the β0-formulas are added to the splitting sets associated with the formulas in
the context, that is, the other formulas in the sequent. This may be illustrated
as in the following outline of a β-inference, where (i4 j) is expanded, and
the indices i and j are added to splitting sets T and U, associated with the
formulas in the context. The indices are, however, not added to S, which is
associated with (i4 j).

S

`
T∪{i}

,
U∪{i} S

`
T∪{j}

,
U∪{j}

i

S

∨
j
`

T

,
U

The effect of not adding the indices to the splitting sets associated with
the β0-formulas themselves is that simple counterexamples are prevented.
For example, if indices were added to the splitting sets associated with the
β0-formulas themselves, then the sequent ∀x(Px ∨ Qx) ` Pa,Qb would be
provable. (In retrospect, this is a typical example of monster-barring [Lak76], as
it only prevents cycles of length 1. The counterexample from Example 4.28,
first presented in [Ant04], contains a cycle of length 2.) Before propagating
the splitting sets onto the free variables in a connection, a pruning operation
is performed on the splitting sets. Depending on the particular connection
formulas at hand, only parts of the splitting sets associated with the formulas
are used for coloring variables. For a given connection, the indices common to
the two splitting sets are removed before coloring the variables, that is, for a
given connection P ` Q, where S and T are the splitting sets associated with
P and Q, respectively, the splitting sets S \ T and T \ S are used for coloring
the variables in P and Q, respectively. The idea behind pruning is to remove
superfluous indices from the splitting sets and to keep only the indices that
are contributed by the other connection formula. For example, consider the
following leaf sequent, where the splitting sets associated with the formulas
are given above the formulas.

{1,3}

Pu `
{1}

Pa,
{3}

Pb

There are two connections, Pu ` Pa and Pu ` Pb. The first connection results
in the colored variable u3, and the second in u1. Without pruning, either
connection results in u13. Because the pruning operation discards indices that
are common to the connection formulas, the variables are essentially colored
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by the β0-indices that are �-smaller or equal to the other connection formula.
To be precise, consider a connection like the following.

S

Pu
i
`
T

Pv
j

The indices in S \ T are exactly the β0-indices in the branch that are�-smaller
than or equal to j and not �-smaller than or equal i. The reason is that x
is in S if and only if x is the index of a β0-formula in the branch, and x is
not �-smaller than or equal to i. If the coloring mechanism is simplified by
replacing S \ T and T \ S with j and i, respectively, then this is essentially
equivalent to the coloring mechanism in Bibel’s Splitting by Need.

The context splitting example (8.1) serves as a good example of the limitations
of pruning.

{3}

Pa,
{3}

Pb ` Pu,Qa
{3}

∧ Qb
{4}

Pa,
{4}

Pb,Qu ` Qa
{4}

∧ Qb

Pa, Pb, Pu→ Qu ` Qa∧Qb

Pa, Pb, ∀x(Px→ Qx) ` Qa∧Qb

Pa∧ Pb, ∀x
u

(Px
3
→ Qx

4
) ` Qa

5
∧Qb

6

The leftmost branch is closable with either u/a or u/b, but the rightmost
branch requires further expansion before closure is possible. The result of
expanding Qa∧Qb in the rightmost branch is the following.

{45}

Pa,
{45}

Pb ,
{5}

Qu `
{4}

Qa
{46}

Pa,
{46}

Pb ,
{6}

Qu `
{4}

Qb

{4}

Pa,
{4}

Pb,Qu ` Qa
{4}

∧ Qb

Pruning does not have any effect for the connections in these two branches.
The connection formulas in these are unified with u5/a and u6/b. However,
there is no admissible substitution that simultaneously closes all three branches
of the derivation. (An admissible substitution should give the same value to
uS and uT if S ⊆ T .) In the context splitting example, the expansion of Qa∧Qb

gives rise to a proof, but with pruning, this is not the case. Consider the effect
of expanding Qa∧Qb in the leftmost branch.
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8.5. Bibel’s Splitting by Need

{35}

Pa,
{35}

Pb `
{5}

Pu,
{3}

Qa
{36}

Pa,
{36}

Pb `
{6}

Pu,
{3}

Qb

{3}

Pa,
{3}

Pb ` Pu,Qa
{3}

∧ Qb

Because of pruning, this expansion provides no additional freedom to close
the branches. It is still possible to close both branches with either u/a or u/b,
but there is no substitution that simultaneously closes the whole derivation.
With pruning, it is necessary to expand the copy of the γ-formula further to
obtain a closing substitution for the whole derivation.

8.5 Bibel’s Splitting by Need

It is natural to compare the method of variable splitting presented in this
thesis with Bibel’s original method, called Splitting by Need, for the connection
calculus. Although no explicit coloring mechanism is defined by Bibel, the
underlying ideas are the same.

For this comparison, some familiarity with Bibel’s original method in Auto-
mated Theorem Proving [Bib87] is presupposed. The most important definitions
related to variable splitting are those of DIFF and IGN, as found in Definition
10.3.D on page 191 in [Bib87]. Whereas Bibel uses the notation (F, i) for a
formula with index i and (t, i) for a term that originates from a formula with
index i, called an indexed term, the notations Fi and t(i), respectively, are used
here.

The DIFF-function is defined on unordered pairs of indexed terms as follows.

(d1) DIFF{t(i), t(j)} = ∅
(d2) If s = fs1s2 . . . sn and t = ft1t2 . . . tn, then

DIFF{s(i), t(j)} =

n⋃
k=1

DIFF{sk(i), tk(j)}.

(d3) Otherwise,
DIFF{s(i), t(j)} = {{s(i), t(j)}}.

For any connection c = (Ps1s2 . . . sn)i ` (Pt1t2 . . . tn)j,

DIFF(c) =

n⋃
k=1

DIFF{sk(i), tk(j)},

and if C is a set of connections, then DIFF(C) =
⋃
c∈CDIFF(c). If a splitting

relation @ and an induced reduction ordering C is given, then for any c ∈ C,
the ignorance function IGNc determines a subset of DIFF(C) in the following
way. Let {u(i), t(j)} ∈ IGNc(C) if
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– u is a variable,

– there is a β-formula β, and

– for the index k of one of the formulas in c,

the following conditions hold.

(i1) βC k

(i2) j and k occur in different subtrees of β

(i3) βC u

Condition (i2) is slightly ambiguous. On the one hand, it may be taken to
mean that j and k are in different subtrees of β with respect to the �-relation;
in other words, that there are dual indices j ′ and k ′ such that β = (j ′4 k ′) and
j and k are �-greater than, or equal to, j ′ and k ′, respectively. Intuitively, this
seems to be the most plausible interpretation, and it is referred to as (i2�) in
the following. A weaker interpretation, referred to as (i2C), is that j and k are
in different subtrees of β with respect to the C-relation, in which case there
are dual indices j ′ and k ′ such that β = (j ′4 k ′) and j ′ E j and k ′ E k. An even
weaker interpretation, referred to as (i2*), is that j and k do not occur on the
“same side” of β; more precisely, that there is no β0, such that β�1 β0, which
is�-smaller than or equal to both j and k. There are examples (given on page
127) to the effect that (i2*) gives an inconsistent calculus, so it is not a very
plausible interpretation. An observation in favor of (i2C) is that (i2�) makes
(i1) redundant. The reason is that (i2�) requires β� k, which implies (i1).

In Figure 8.1 there is a formula tree representation of the context splitting
example, where the possible connections are indicated with connecting lines.

u

4

Pu⊥

3

Qu>

4

Pa>

1

Pb>

2

4

Qa⊥

5

Qb⊥

6

c1

c2 c3

c4

Figure 8.1: Formula Tree Representation of the Context Splitting Example.
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Let C be the spanning set of connections {c1, c2, c3, c4}. (Both sets {c1, c3, c4}

and {c2, c3, c4} are also spanning, but for the current discussion, the particular
spanning set does not matter.) The formal definition of a Splitting by Need-
proof is that there is a splitting relation @ such that for all c ∈ C there is
a substitution that solves the set DIFF(C) \ IGNc(C), which is referred to as
PARTc(C). The only possible nonempty splitting relation in this example is
indicated by the dashed arrow, which represents that (54 6) @ u. Table 8.1
gives the difference and ignorance sets, DIFF(ci) and IGNci

(C), for i = 1, 2, 3, 4.

i ci DIFF(ci) IGNci
(C)

1 {Pa>1 , Pu
⊥
3 } {{a(1), u(3)}} ∅

2 {Pb>2 , Pu
⊥
3 } {{b(2), u(3)}} ∅

3 {Qu>4 , Qa
⊥
5 } {{u(4), a(5)}} {{u(4), b(6)}}

4 {Qu>4 , Qb
⊥
6 } {{u(4), b(6)}} {{u(4), a(5)}}

Table 8.1: Difference and Ignorance Sets for the Connections.

To verify the values for the IGN-sets, observe that the only possible way to
satisfy (i3), for any of the IGN-sets, is to let β = (54 6). Furthermore, the only
possible way to satisfy either (i2C) or (i2�) is to let j = 5, k = 6 or j = 6, k = 5.
It follows that the two first IGN-sets are empty, because for c1 and c2, the
only k-candidates are 1, 2, and 3. The connection c3 has a formula with index
k = 5, so if j = 6, then {u(4), b(6)} ∈ IGNc3

(C) for the following reasons: (i1)
holds because (5 4 6) � k, which implies that (5 4 6) C k. (i2C) and (i2�)
hold because 5 and 6 are in different subtrees of (54 6) with respect to both
the C- and the �-relation. (i3) holds because (54 6) @ u. Similarly, c4 has a
formula with index k = 6, so if j = 5, then {u(4), b(5)} ∈ IGNc4

(C). It follows
that there is no Splitting by Need-proof of this formula without increasing the
multiplicity.

The attractiveness of the weaker interpretation, (i2*), although inconsistent, is
that it would give a proof here. For instance, the connection c1 has a formula
with index k = 3, so if j = 2, then {b(2), u(3)} ∈ IGNc1

(C) for the following
reasons: (i1) holds because (546) @ u and u� 3, which implies that (546)C3.
(i2*) holds because 2 and 3 do not occur on the same side of (54 6). (i3) holds
because (54 6) @ u. If j = 5, then {u(4), a(5)} ∈ IGNc1

(C) for similar reasons,
and similarly for the other connections.

The following example shows that (i2*) gives an inconsistent calculus. Consider
the following invalid sequent.

Pa
1

∨ Pb
2
, ∀x
u

(Px
3
→ Qx

4
) ` Qa

5
∧Qb

6

In Figure 8.2 there is a formula tree representation of the sequent, where
the possible connections are indicated with connecting lines and a splitting
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relation is indicated with dotted arrows.

u

4

Pu⊥

3

Qu>

4

4

Pa>

1

Pb>

2

4

Qa⊥

5

Qb⊥

6

c1

c2 c3

c4

Figure 8.2: Formula Tree Representation of an Invalid Context Splitting Exam-
ple.

Under (i2*), the IGN-sets remove too much, as shown in Table 8.2. The result
is that all sets PARTc(C) are solvable and that the formula is provable.

i ci DIFF(ci) IGNci
(C) with (i2*)

1 {Pa>1 , Pu
⊥
3 } {{a(1), u(3)}} {{b(2), u(3)}, {u(4), a(5)}, {u(4), b(6)}}

2 {Pb>2 , Pu
⊥
3 } {{b(2), u(3)}} {{a(1), u(3)}, {u(4), a(5)}, {u(4), b(6)}}

3 {Qu>4 , Qa
⊥
5 } {{u(4), a(5)}} {{a(1), u(3)}, {b(2), u(3)}, {u(4), b(6)}}

4 {Qu>4 , Qb
⊥
6 } {{u(4), b(6)}} {{a(1), u(3)}, {b(2), u(3)}, {u(4), a(5)}}

Table 8.2: Difference and ignorance sets for the connections.

Another property and limitation of Splitting by Need is that it is not always
possible to split a variable on different (so-called α-related) formulas in the
context, even though it is natural and desirable to do so. This is due to the
fact that the ignorance functions do not remove sufficiently many elements
from the difference sets. The following is a derivation of a valid root sequent,
and a closing substitution is given above the leaf sequents.
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8.5. Bibel’s Splitting by Need

u13/a

13

Pu ` Pa · · ·

u14/b

14

Pu ` Pb · · ·
Pu ` Pa∧ Pb · · ·

25

R, Pu ` R

u267/c

267

R, Pu ` Pc

u268/d

268

R, Pu ` Pd

R, Pu ` Pc∧ Pd

R, Pu ` R∧ (Pc∧ Pd)

Pu, Pa∧ Pb→ R ` R∧ (Pc∧ Pd)

∀x
u
Px
0
, Pa
3

∧
1
Pb
4
→ R

2
` R

5
∧ (Pc

7
∧
6
Pd
8

)

The splitting substitution is admissible due to the following, total, splitting
relation.

{(14 2) @ u, (34 4) @ u, (54 6) @ u, (74 8) @ u}

A formula tree representation is given in Figure 8.3.

u

Pu>

4

4
1

Pa⊥

3

Pb⊥

4

R>

2

4

R⊥

5

4
6

Pc⊥

7

Pd⊥

8c0

c1

c2 c3

c4

Figure 8.3: Formula Tree Representation of a Invalid Context Splitting Exam-
ple.

To have a Splitting by Need-proof, the ignorance function must for each con-
nection remove three out the four elements from the following difference
set.

DIFF(C) = {{u(0), a(3)}, {u(0), b(4)}, {u(0), c(7)}, {u(0), d(8)}}

For each connection, it only removes one of four. For example, the connection
Pu0 ` Pa3 has a formula with index k = 3. If β = (34 4) and j = 4, then the
IGN-set for this connection contains {u(0), b(4)} for the following reasons. (i1)
holds because (34 4)� 3, which implies that (34 4)C 3. (i2C) and (i2�) holds
because 3 are 4 are in different subtrees of (34 4) with respect to both the C-
and the �-relation. (i3) holds because (34 4) @ u. However, the IGN-set does
not contain {u(0), c(7)} or {u(0), d(8)}, because the only k-candidate is 3, and the
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only j-candidates for satisfying (i2C) or (i2�) are 2 or 4. The other cases are
similar.

A method of variable splitting should be able to prove sequents of this kind
without expanding extra copies of the γ-formula. In comparison, a ground
or pure-variable calculus can do this easily provided that the β-formulas are
expanded below the γ-formulas.

8.6 Comparison with Universal Variable Methods

Variable splitting has much in common with methods for detecting universal
variables. For a general discussion of rigid and universal variables see, for
example, [Häh01]. An easily detectable subclass of universal variables is the
class of so-called local variables [Let98, LS03]. In variable-splitting terminology,
a variable u in a formula β is called local in β if it is not critical for β. If a
variable u is not critical in any β, then it is universal.

It should be noted that Theorem 6.22 in Section 6.3 implies an exponential
speedup result for local variables over nonlocal variables. The reason is that
all the variables in the class of formulas that shows the exponential speedup
are local.

Variable splitting (based on l-admissibility) is strictly more general than the
detection and use of local variables. First of all, if a variable u is not critical in
any β, then it may not contribute to a cyclic reduction ordering, for this would
imply that a @ ul b, for some β-formulas a and b, which is only possible if u
is critical for b. Consequently, the variable u may be split by any β-formula
without affecting admissibility. Furthermore, there are examples where the
locality property is lost, and never regained, and where variable splitting is
much more fine-grained than the use of local variables. The following is a
VS(�)-proof of a root sequent for which there are no local variables.

u13/a

13

Pu ` Pa,Qa

Pu ` Pa∨Qa

u14/b

14

Pu ` Pb,Qb

Pu ` Pb∨Qb

Pu ` (Pa∨Qa) ∧ (Pb∨Qb)

u23/a

23

Qu ` Pa,Qa

Qu ` Pa∨Qa

u24/b

24

Qu ` Pb,Qb

Qu ` Pb∨Qb

Qu ` (Pa∨Qa) ∧ (Pb∨Qb)

Pu∨Qu ` (Pa∨Qa) ∧ (Pb∨Qb)

∀x
u

(Px
1

∨Qx
2

) ` (Pa∨Qa
3

) ∧ (Pb∨Qb
4

)
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The splitting substitution is�-admissible due to the splitting relation {(344) @
u}. There are, however, no local variables to exploit in this case, because u is
critical in (14 2). In this case, a variable-pure derivation, with the optimal
order of rule application, gives a proof of the same size without exploiting
local variables at all. The next VS(l)-proof is simple variant of the previous,
but where a variable-pure proof of the same size does not exist.

u13/a

13

Pu ` Pa,Qa

Pu ` Pa∨Qa

u14/b

14

Pu ` Pb,Qb

Pu ` Pb∨Qb

Pu ` (Pa∨Qa) ∧ (Pb∨Qb)

u23/a

23

Qu ` Pa,Qa

Qu ` Pa∨Qa

u24/b

24

Qu ` Pb,Qb

Qu ` Pb∨Qb

Qu ` (Pa∨Qa) ∧ (Pb∨Qb)

Pu∨Qu ` (Pa∨Qa) ∧ (Pb∨Qb)

` (Pu∨Qu)→ (Pa∨Qa) ∧ (Pb∨Qb)

` ∃x
u

((Px
1

∨Qx
2

)→ (Pa∨Qa
3

) ∧ (Pb∨Qb
4

))

The splitting substitution is l-admissible due to the splitting relation {(344) @
u}. Note that it is not �-admissible, because u� (34 4). A nice property of
variable splitting and l-admissibility is that the root sequents of these two
derivations are treated uniformly.

Theorem 8.5 (Exponential Speedup over Local Variables)
There is a set of valid formulas {ϕ1, ϕ2, ϕ3, . . .}, with no local variables, such
that vsl(n), the size of the smallest VS(l)-proof of ϕn, is Θ(n), and vs�(n),
the size of the smallest VS(�)-proof of ϕn, is Θ(2n). a

Proof. Take the class of formulas, {ϕn}16n, recursively defined by

– ϕ0 = T and

– ϕn = ∃x(ϕn−1 ∧ ((Pnx∨Qnx)→ ((Pna∨Qna) ∧ (Pnb∨Qnb)))).

The VS(l)-proofs still grow linearly in n, whereas the VS(�)-proofs grow
exponentially with no local variables. The argument is essentially the same as
in the proof of Theorem 6.22. QED
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8.7 Intuitionistic Propositional Logic

This section contains a small case study of how the variable-splitting method
may be applied to another calculus, in particular, how it may be applied to a
free-variable, labelled calculus for intuitionistic propositional logic (IPL). The
application to this calculus is not difficult, and only an overview is given here.
For more details, consult [AW07b].

Connection-based proof search methods for intuitionistic logic were en-
abled by Wallen’s introduction of a matrix characterization for intuitionistic
logic [Wal90]. The idea is to encode the rule dependencies in sequent calculi
for intuitionistic logic as term dependencies and to characterize intuitionistic
validity by the unifiability of these terms. Variable splitting may be seen as a
further extension of this encoding in the sense that rule dependencies caused
by β-formulas are also taken into account.

For the sake of simplicity, only the propositional fragment is considered here.
Languages for IPL are therefore without quantifiers and only with relation
symbols of arity zero, that is, proposition letters. A signed formula with main
connective → or ¬ has an intuitionistic type, φ or ψ, as follows.

φ

(A→ B)>i

(¬A)>i

ψ

(A→ B)⊥i

(¬A)⊥i

Intuitionistic types are used for formulas of IPL that cause properties of
nonpermutability when expanded [Waa01, Wal90]. For instance, the following
two derivations in the multi-succedent calculus m-G3i [TS00] for IPL are
permutations of each other, and they do not agree on their leaf sequents. (The
difference is indicated by an arrow.) The reason for the nonpermutability is
that the ψ-inferences are destructive in that they remove all the formulas from
the succedents. This happens in the inference marked with ψ∗ in the rightmost
derivation.

P ` Q,P Q, P ` Q
φ

P → Q,P ` Q
ψ

P → Q ` P → Q

P ` Q
ψ∗

` P → Q,P

Q, P ` Q
ψ

Q ` P → Q
φ

P → Q ` P → Q
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Indices and indexed formulas are defined as before, with the exception that
formulas of type φ are generative (just like formulas of type γ are generative
for first-order logic). When a formula of type φ is expanded in a derivation, a
copy of this formula is retained for further expansion. The copy of a φ-formula
is denoted by φ ′ and has an index different from φ. The indices of φ- and
ψ-formulas are called (intuitionistic) variables and parameters, respectively. A
label is a string over variables and parameters, and it is called ground if it
only contains parameters. A pair of a formula F and a label p, written F[p], is
called a labelled formula. From this point, all formulas are assumed to be labelled. A
formula F[p] is called ground if p is a ground label, and a sequent is ground if
all formulas in it are ground.

The empty label is denoted by ε, and the initial-substring relation is denoted
by �. If p is an initial substring of q, then p � q, and if p is a proper initial
substring of q, then p ≺ q.

Notation. The letters u, v,w, . . . are used for variables, and the letters a, b, c, . . .
are used for parameters.

Because formulas of type φ give rise to a different notion of a copy of a formula,
the �- and �−-relations must be redefined in terms of φ.

Let �1 be the least relation on formulas such that the following conditions
hold, and let � be the transitive closure of �1.

– α�1 {α1, α2}

– β�1 {β1, β2}

– φ�1 φ ′

Let �−
1 be the least relation on formulas such that the following conditions

hold, and let �− be the transitive closure of �−
1 .

– α�−
1 {α1, α2}

– β�−
1 {β1, β2}

– If θ�−
1 φ and φ ′ is a copy of φ, then θ�−

1 φ
′.

Derivations for IPL are defined from the derivation rules given in Figure 8.4.

To define IPL-provability, and thus to capture intuitionistic validity, each
formula in a derivation is assumed to be labelled with the so-called prefix of
the formula. The prefix of a formula Fi is the label a1 . . . an, where a1, . . . , an
are all the indices of type φ or ψ �−-less than i, and a1 �− . . . �− an.
(Prefixes are defined from the �−-relation, rather than the �-relation.) All
formulas in derivations are labelled with their prefix. For instance, all formulas
in a root sequent of a derivation must have the empty prefix.

133



8. Various Topics and Loose Ends

Γ∗, α1, α2

Γ, α

Γ∗, β1 Γ, β2

Γ, β

Figure 8.4: Derivation Rules for IPL. If the expanded formula is of type φ,
then Γ∗ = Γ ∪ {φ ′}; otherwise, Γ∗ = Γ .

An (intuitionistic) substitution is a function from variables to labels. The
domain of a substitution is extended to arbitrary labels in the standard way.
A substitution τ closes a leaf sequent Γ of a derivation if there is a pair of
atomic formulas A[p]> and A[q]⊥ in Γ such that pσ � qσ. It is closing for a
derivation if it closes every leaf sequent. If D is a derivation of Γ , and τ is a
closing substitution for D, then the pair 〈D, τ〉 is an (intuitionistic) proof of Γ .
For example, the following is a proof of P → Q ` P → Q.

u/a

P[a] ` Q[a], P[u]

` P → Q[ε], P[u]

u/a

Q[u], P[a] ` Q[a]

Q[u] ` P → Q[ε]

P →
u
Q[ε] ` P →

a
Q[ε]

An (intuitionistic) model is a triple 〈W,R, V〉, where W is nonempty set, R is a
partial ordering on W, and V is a function from proposition letters to subsets
of W, such that R satisfies the monotonicity condition: If x ∈ V(P) and xRy, then
y ∈ V(P). The forcing relation  is inductively defined for unsigned formulas
in the following way.

x  P iff x ∈ V(P), where P is a proposition letter,
x  F∧G iff x  F and x  G,
x  F∨G iff x  F or x  G,
x  F→ G iff for all y such that xRy, either y 6 F or y  G, and
x  ¬F iff for all y such that xRy, y 6 F.

The monotonicity condition transfers from proposition letters to arbitrary
formulas: If x  F and xRy, then y  F. A formula is intuitionistically valid
if x  F for every x in every model. For signed formulas, let x  F> if x  F,
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and x  F⊥ if x 6 F. A label interpretation function is a function ι from the set of
ground labels to W such that if p � q, then (ιp)R(ιq).

A model M is a countermodel for a ground sequent Γ under a label interpretation
function ι if ι(p)  F for all formulas F[p] in Γ (all formulas in Γ have polarities,
but these are not displayed unless it is needed). A valid sequent is a sequent
for which there is no countermodel.

A label interpretation function ι is canonical if the following two conditions
hold.

– If ι(p) 6 ¬F, then ι(pa)  F, where a is the index of ¬F.
– If ι(p) 6 F → G, then ι(pa)  F and ι(pa) 6 G, where a is the index of
F→ G.

Lemma 8.6 (Canonical Models for IPL)
If a root sequent Γ has a countermodel M, then there is a canonical label
interpretation function ι such that M is a countermodel of Γ under ι. a

Proof. The proof is by induction on ground labels. Because M is a counter-
model of Γ , and all formulas in Γ have the empty prefix, there is an x such
that x  F for all formulas F in Γ . Let ι(ε) = x. For all formulas ¬F⊥ with index
a, if ι(p) 6 ¬F, then there is a y such that ι(p)Ry and y  F, so let ι(pa) = y;
otherwise, let ι(pa) = ι(p). Similarly for all formulas (F→ G)⊥. QED

Variables in labels may be colored exactly like instantiation variables are
colored in first-order logic, and this gives rise to colored labels. If p is a
prefix, then p̂B denotes the result of replacing all variables u in p with uB.
If B is the branch name associated with a formula with prefix p, then p̂ is a
shorthand notation for p̂B. A colored variable in p̂ is called a colored variable
for the derivation, and if p is the prefix of a formula in a leaf sequent, then it is
called a leaf-colored variable for the derivation.

After colored variables are defined, splitting substitutions may be defined.
An (intuitionistic) splitting substitution for a derivation is a function from the
set of leaf-colored variables to the set of colored labels defined from this set.
The domain of a splitting substitution is extended to arbitrary labels in the
standard way. A splitting substitution σ closes a leaf sequent Γ of a derivation
if there is a pair of atomic formulas A[p]> and A[q]⊥ in Γ such that p̂σ � q̂σ.

Splitting relations for ground splitting substitutions are defined as in Defi-
nition 4.20, along with the notion of �-admissibility. (As before, a splitting
relation may be interpreted as an order constraint on the expansion of β- and
φ-formulas in a pure-variable calculus, where every φ-formula introduces
a fresh free variable.) If D is a derivation of Γ and σ is a total, closing and
�-admissible splitting substitution for D, then the pair 〈D,σ〉 is a VSi-proof of
Γ . The resulting calculus is denoted by VSi. Soundness and completeness of
VSi are proved exactly like for VS(�).
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The following is an example of a VSi-proof.

ub/b

vb/a

b

P[ua], Q[ua] ` P[bv]

(P ∧Q)[ua] ` P[bv]

(P ∧Q)[ua],¬P[b] `
(P ∧Q)[ua] ` ¬¬P[ε]

uc/c

wc/a

c

P[ua], Q[ua] ` Q[cw]

(P ∧Q)[ua] ` Q[cw]

(P ∧Q)[ua],¬Q[c] `
(P ∧Q)[ua] ` ¬¬Q[ε]

(P ∧Q)[ua] ` ¬¬P ∧ ¬¬Q[ε]

` ¬¬P ∧ ¬¬Q[ε],¬(P ∧Q)[u]

¬
u
¬
a
(P ∧Q)[ε] ` ¬

b
¬
v
P ∧ ¬

c
¬
w
Q[ε]

Because (b4 c) is the index of the right conjunction, the two branches are
named b and c. The leaf sequent of branch b contains P[ua]> and P[bv]⊥. The
colored prefixes are ûa = uba and b̂v = bvb, and this leaf sequent is closed
by {ub/b, vb/a}. The substitution σ = {ub/b, vb/a, uc/c,wc/a} closes the whole
derivation, and {(b4 c) @ u} is an admissible splitting relation for σ. It is a
splitting relation because ubσ = b 6= c = ucσ implies that (b4 c) @ u, and it is
admissible because the induced reduction ordering is irreflexive.

The following is a derivation of an invalid root sequent. The closing splitting
substitution given above the leaf sequents is not admissible.

u1/a

1

P[a], Q[b] ` P[u]

u2/b

2

P[a], Q[b] ` Q[u]

P[a], Q[b] ` (P ∧Q)[u]

¬(P ∧Q)[ε], P[a], Q[b] `
¬(P ∧Q)[ε], P[a] ` ¬Q[ε]

¬(P ∧Q)[ε] ` ¬P[ε],¬Q[ε]

¬
u
(P
1

∧Q
2
)[ε] ` ¬

a
P ∨ ¬

b
Q[ε]

u

(14 2)

The following is another example of a VSi-proof.
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ua/a

a

P[a] ` P[u], Q[u]

` ¬P[ε], P[u], Q[u]

ub/b

b

Q[b] ` P[u], Q[u]

` ¬Q[ε], P[u], Q[u]

` ¬P ∧ ¬Q[ε], P[u], Q[u]

` ¬P ∧ ¬Q[ε], (P ∨Q)[u]

¬
u
(P ∨Q)[ε] ` ¬

a
P ∧ ¬

b
Q[ε]

u

(a4 b)

8.8 Complete Colored Variables as Support

In the discussion of nonground splitting substitutions, in Section 8.2 on page
120, the possibility of requiring leaf-colored variables to be complete was
mentioned briefly. The next example shows that this requirement is too strict.
Although it might be beneficial for some purposes, it prevents the possibility
of early closure, and it can lead to the expansion of unnecessarily many
formulas. The suggested requirement is automatically fulfilled for balanced
derivations, but it is not necessary for a derivation to be balanced for a colored
variable to be complete.

The following derivation is the same as the one from the discussion of Splitting
by Need in Section 8.5. In this derivation, the leaf-colored variables are not
complete. The root sequent is valid, and a closing substitution is given above
the leaf sequents.

u13/a

13

Pu ` Pa · · ·

u14/b

14

Pu ` Pb · · ·
Pu ` Pa∧ Pb · · ·

25

R, Pu ` R

u267/c

267

R, Pu ` Pc

u268/d

268

R, Pu ` Pd

R, Pu ` Pc∧ Pd

R, Pu ` R∧ (Pc∧ Pd)

Pu, Pa∧ Pb→ R ` R∧ (Pc∧ Pd)

∀x
u
Px, Pa

3
∧
1
Pb
4
→ R

2
` R

5
∧ (Pc

7
∧
6
Pd
8

)

The splitting substitution is admissible because of the following, total, splitting
relation.

{(14 2) @ u, (34 4) @ u, (54 6) @ u, (74 8) @ u}
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It is evident from this derivation that it is unnecessarily strict to require the
support of a splitting substitution to contain only complete colored variables.
If colored variables are required to be complete, it is impossible to close it,
because the colored variables u13 and u14 are not complete. For instance, u13

is not complete because (54 6) @ u and 13 does not decide (54 6) (13 contains
neither 5, 6, nor an index that is β-related to (54 6)). To obtain a proof, it is
necessary to completely expand the formula ¬R ∧ (Pc ∧ Pd) in both of the
leftmost branches.

8.9 Branchwise Termination Conditions

Variable splitting makes it possible to regain some of the ability to look
branchwise at derivations, like in ground calculi, and perhaps it is possible
to use variable splitting for defining termination conditions. An unanswered
question is how much there is to gain from variable splitting in terms of
reducing the need for contraction and how this may be exploited for defining
termination conditions. The following is one failed attempt at this.

A valid sequent whose formulas are in the Bernays-Schönfinkel
class1 is provable with variable splitting with no more than n

instances for each branch containing n constant symbols.

Because of critical variables, this is too much to hope for. The following is a
derivation of a valid sequent in this class, and it is not possible to obtain a
proof without expanding another copy of the γ-formula.

u1/a

1

Pu ` Pa

` Pu→ Pa

u2/b

2

Pu ` Pb

` Pu→ Pb

` (Pu→ Pa) ∧ (Pu→ Pb)

` ∃x((Px→ Pa) ∧ (Px→ Pb))

` ∀z∃x((Px→ Pa) ∧ (Px→ Pz))

` ∀y
a
∀z
b
∃x
u

((Px→
1
Py) ∧ (Px→

2
Pz))

The derivation has only one constant in each branch, but the closing splitting
substitution is not admissible. By expanding another copy of the γ-formula,
however, an admissible, closing substitution may be found. Even though there

1This class contains the formulas that in prenex normal form have a δ∗γ∗-quantifier prefix
and do not contain function symbols.
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is only one constant per branch, two copies of the γ-formula are needed for a
proof. Here is a similar, but less trivial, example of the same phenomenon.

u1/a

1

Pu ` Pa,Qa

Pu ` Pa∨Qa

` Pu→ (Pa∨Qa)

u2/b

2

Qu ` Pb,Qb

Qu ` Pb∨Qb

` Qu→ (Pb∨Qb)

` (Pu→ (Pa∨Qa)) ∧ (Qu→ (Pb∨Qb))

` ∃x((Px→ (Pa∨Qa)) ∧ (Qx→ (Pb∨Qb)))

` ∀z∃x((Px→ (Pa∨Qa)) ∧ (Qx→ (Pz∨Qz)))

` ∀y
a
∀z
b
∃x
u

((Px→
1

(Py∨Qy)) ∧ (Qx→
2

(Pz∨Qz)))

8.10 Indexing, Multiplicities, and Free Variables

The multiplicity of a formula is the number of copies of a γ-formula that is
considered in a derivation. Some techniques for proof search, called iterative
deepening, are based on iteratively increasing the multiplicities until a proof,
if any, is found. For the purpose of investigating variable splitting, there is
no need to consider multiplicities explicitly, because a γ-formula is always
copied into the premiss of a γ-inference.

The indexing system in Definition 3.3 is based on indexing copies of γ-
formulas differently, but there is another, alternative, approach to indexing,
where the copies of a γ-formula are given the same index and instead the
instances, the formulas of type γ0, are indexed differently. The underlying
difference is whether a γ-formula is taken to be instantiated only once, but
with a fresh copy each time, as indicated in the following left-hand diagram, or
simply instantiated repeatedly to produce the different γ0-copies, as indicated
in the right-hand diagram.

γ

γ0

γ

γ0

γ

γ0

γ-copying

γ

γ0 γ0 γ0

γ0-copying
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For the sake of discussion, refer to these two approaches as γ- and γ0-copying,
respectively. In a standard sequent calculus inference like in Example 3.1 on
page 23, there is no way of distinguishing between these views. The two
occurrences of the γ-formula may be taken as different formulas altogether or
as different occurrences of the same formula. Although γ0-copying is simpler,
less redundant and appropriate for dealing with matrices, γ-copying gives a
more fine-grained indexing system, and this is one of the reasons why it is
more appropriate for variable splitting. When the premiss and the conclusion
occurrences are indexed differently, a more detailed analysis is possible. Both
approaches are, however, present in publications. For instance, γ0-copying may
be found in the PhD theses of Wallen [Wal90] and Schmitt [Sch00], and γ0-
copying may be found in several research papers from the last decade [KO99,
KOSP00, Ott05].

The choice between γ- or γ0-copying also affects the method for individuating
free variables. In this thesis, γ-indices are used as variables, because γ-formulas
are copied, not γ0-formulas. Wallen [Wal90], for instance, uses γ0-formulas for
this purpose. For the most part, this is a matter of taste and convenience. One
reason for choosing γ-indices as variables, however, apart from other aesthetic
reasons, is that there is a one-to-one correspondence between indices, inference
rules and expanded formulas. Furthermore, if one index is �-smaller than
another, the former must be expanded before the latter. This enables a very
precise proof-theoretical analysis. If γ0-indices are taken as variables, it is, for
example, necessary, as in Schmitt [Sch00]), to look back to determine whether or
not to expand a γ-formula. This problem simply does not occur if γ-formulas
are copied and �-related.

8.11 Anti-prenexing, Skolemization, and Liberalization

The liberalization of the reduction ordering presented in Chapter 6 is achieved
by replacing the �-relation with the weaker l-relation. The l-relation is
a restriction of the �-relation to critical variables, and it results in an ex-
ponential reduction of proof size, as shown in Theorem 6.22 on page 87.
The liberalization is closely related to the process of anti-prenexing [Bib87]
or transforming formulas to miniscope form [Wan60]. These techniques elimi-
nate vacuous dependencies by pushing quantifiers as far as possible inwards
toward the atomic formulas.

Anti-prenexing may be achieved by iteratively applying equivalences like the
following (provided that x is not free in B).

1. ∃x(A∨ B)⇔ ∃xA∨ B

2. ∀x(A∧ B)⇔ ∀xA∧ B

140



8.11. Anti-prenexing, Skolemization, and Liberalization

3. ∃x(A∧ B)⇔ ∃xA∧ B

4. ∀x(A∨ B)⇔ ∀xA∨ B

5. ∃x(A∨ B[y/x])⇔ ∃xA∨ ∃yB
6. ∀x(A∧ B[y/x])⇔ ∀xA∧ ∀yB

Although related, the idea for liberalized variable splitting came from observ-
ing the similarities between variable splitting and Skolemization. To satisfy a
β-formula that contains free variables, under some assignment, one of the im-
mediate subformulas must be satisfied. The choice of subformula depends on
the assignment and the values given to the free variables. Similarly, to satisfy
a δ-formula, one must choose a witnessing element for which the immediate
subformula is satisfied, and this choice also depends on the assignment and
the values given to the free variables. For δ-formulas, these dependencies are
usually captured with Skolemization, where the quantifier of the δ-formula is
removed and a Skolem term with a fresh function symbol is introduced and
the arity of the function symbol depends on the free variables at hand. Instead
of using terms, like with Skolemization, to capture the corresponding depen-
dencies for β-formulas, a relation, like the l-relation, is used. (Incidentally,
Bibel does something similar for δ-formulas in An Alternative for Skolemization
in [Bib87, IV.8, pp.169–176].) The liberalization of the reduction ordering lies
in that fewer variables are considered when defining the l-relation. Because
the choice of β-subformula only depends on the variables occurring in both
immediate subformulas, the l-relation may be restricted to such variables. The
liberalization is analogous to the transition from a δ++ -rule to a δ∗-rule [BF95]
in that fewer variables are considered. The choice between subformulas of the
β-formulas may even be viewed as a finite case of the choice for δ-formulas,
because δ-formulas may be interpreted as infinite disjunctions or conjunctions.

It seems to be the case that the effect of liberalizing the reduction ordering
coincides with the effect of anti-prenexing, and that if formulas are already
anti-prenexed, then the liberalization does not have any effect. For instance,
the exponential-speedup results in Theorems 4.33, 6.22, and 8.5 are all proved
with classes of formulas that are not anti-prenexed. However, and this is
the crucial point, a formula may be translated into an equivalent formula
for which all variables are critical and no anti-prenexing is possible. For
Theorem 4.33, such a translation actually gives a stronger result, because
no anti-prenexing is possible and the exponential speedup still holds. The
proofs of Theorems 6.22 and 8.5, on the other hand, exploit the fact that the
formulas are not anti-prenexed, and if all variables are made critical, then the
exponential speedup does not hold anymore.

One way of preventing anti-prenexing is to define a recursive function κ, in
the following way, such that if F is a formula, then all variables in κ(F) are
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critical. For nonatomic formulas, κ leaves the main connective or quantifier
unchanged and is recursively applied to the immediate subformulas. If A is
an atomic formula, and ~y consists of all the quantification variables that A
is in the scope of, then κ(A) is defined as follows, where T is some relation
symbol that does not occur elsewhere in the formula. This symbol may be
interpreted as a vacuous relation that is always true.

– κ(A>) = (T~x∧A)>

– κ(A⊥) = (T~x→ A)⊥

The application of κ to a formula gives a formula where all variables are
critical. For example, the application of κ to ∀x(Pa∧ Pb→ Qx)> gives

∀x((Tx→ Pa) ∧ (Tx→ Pb)→ (Tx∧Qx))>.

The following are derivations over these two formulas. Notice that the leaf
sequents are identical except for the formula Tv.

13

` Pa
14

` Pb
` Pa∧ Pb

2

Qv `
Pa∧ Pb→ Qv `
∀x
u

(Pa
3

∧
1
Pb
4
→ Qx

2
) `

13

Tv ` Pa
` (Tv→ Pa)

14

Tv ` Pb
` (Tv→ Pb)

` (Tv→ Pa) ∧ (Tv→ Pb)

2

Tv,Qv `
Tv∧Qv `

(Tv→ Pa) ∧ (Tv→ Pb)→ (Tv∧Qv) `
∀x
u

((Tx→ Pa)
3

∧
1

(Tx→ Pb)
4

→ (Tx∧Qx)
2

) `
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8.12 Finitizations

A nice way of creating instructive examples and coming up with counterexam-
ples is to finitize formulas with quantifiers. This is best illustrated by example.

Consider the following invalid sequent.

∀x∃yPxy ` ∃y∀xPxy

By replacing the δ-formulas with infinite conjunctions and disjunctions, the
formula may be rewritten to the following formula.

∀x
∨
i∈I
Pxai ` ∃y

∧
j∈J
Pbjx

Furthermore, if the infinite connectives are replaced with finite connectives,
the sequent remains invalid, and the following sequent is obtained.

∀x(Pxa∨ Pxb) ` ∃x(Pax∧ Pbx)

This is the sequent from Example 4.28 on page 57.

The context splitting examples, Examples 8.1 and 8.2, may also be seen to be
finitizations, but in this case from the following valid sequent.

∀xPx, ∀x(Px→ Qx) ` ∀xQx

The two finitizations considered were the following.

∀xPx, ∀x(Px→ Qx) ` Qa∧Qb

Pa∧ Pb, ∀x(Px→ Qx) ` Qa∧Qb

Several of the other examples were also conceived in the same way.
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Chapter 9

Conclusion

In this thesis, the fundamentals for defining and proving soundness of calculi
with variable splitting are presented. Here is a table with an overview of
the different variable-splitting calculi. The ones that are explicitly defined
in the thesis are accompanied with a page reference, and the ones that are
not mentioned are written in grey. The rows correspond to definitions of
the reduction orderings, and the columns correspond to the restrictions on
splitting substitutions. For instance, the “connection”-column contains the
calculi for which the support of a splitting substitution is required to contain
all of the colored variables from a spanning set of connections.

total connection partial non-ground

� VS(�)
(page 55)

VS(�, C)
(page 91)

VS(�, P)
(page 90)

VS(�, ng)
Open

�− VS(�−)
(page 77)

VS(�−, C) VS(�−, P)
(page 90)

VS(�−, ng)

Open

l VS(l)
(page 81)

VS(l, C) VS(l, P)
[AW07a]
(page 90)

VS(l, ng)
Open

l− VS(l−)
Open
(page 95)

VS(l−, C)

Unsound
VS(l−, P)
Unsound
(page 93)

VS(l−, ng)

Unsound

The calculus VS(�) is the simplest of the calculi, where the reduction or-
derings are based on the full �-relation and the splitting substitutions are
required to be total. Although the system is simple, its proofs may be exponen-
tially smaller than the corresponding, smallest variable-pure proofs, as shown
in Theorem 4.33. The calculus VS(l, P) is the most liberal of the calculi known
to be sound and the one presented in [AW07a]. There are two obvious ways
of making this calculus more liberal: The first is by removing�β0

from the re-
duction ordering, that is, by disregarding the�-relation between β0-formulas.
This, however, leads to an unsound calculus, VS(l−, P), as shown in Theo-
rem 6.33. The second is by allowing nonground splitting substitutions, and, as
pointed out in Section 8.2, there seems to be no straightforward way of doing
this in an interesting way. The proof that VS(l−, P) is unsound also works
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for VS(l−, C), but, because of totality, not for VS(l−). The latter calculus has
not been investigated very thoroughly, because it does not seem useful to
have a very liberal reduction ordering together with a very strict requirement
for splitting substitutions. None of the calculi in the rightmost column are
defined here, but because VS(l−, ng) is a liberalization of VS(l−, P), is must,
in any case, be unsound.

Much emphasis is given to soundness proofs in this thesis, and most of the
calculi are shown to be sound in two different ways: by proof transformation
and by countermodel preservation. Soundness by proof transformation typ-
ically works by transforming a variable-splitting proof into a variable-pure
or variable-sharing proof. This method for proving soundness only goes so
far; it breaks down for reduction orderings based on the l-relation. Although
it may be possible to prove soundness of, for instance, VS(l, P) by means of
proof transformation, the exponential-speedup result in Theorem 6.22 implies
that there is no simple way of doing this, like for VS(�). Soundness by coun-
termodel preservation does not suffer from this limitation and works for all
of the sound calculi in this thesis.

The definedness and persistence properties for augmentations and general
augmentations are common denominators for the soundness proofs and es-
sential notions for reasoning about variable splitting. One of the technical
contributions in this thesis is the identification of these properties. The de-
finedness and persistence properties for augmentations are implied by the
conformity of derivations. For example, a colored variable for a conforming
derivation is secured, and therefore defined, for an augmentation. This is
not necessarily the case for nonconforming derivations. The definedness and
persistence properties for general augmentations, on the other hand, are not
implied by the conformity of derivations, but by the completeness of colored
variables. For example, a complete colored variable is secured, and therefore
defined, for a general augmentation. For some time, it seemed to be the case
that general augmentations were necessary for proving soundness for calculi
with partial splitting substitutions or liberal reduction orderings. This, how-
ever, is not the case. Ordinary augmentations and conformity of derivations
are sufficient for proving soundness of all of the sound calculi in this thesis.
One of the insights from all this is that conformity and general augmentations
do not play well together. The main purpose of general augmentations is to
enable proofs of soundness without the assumption of conformity.

The method of variable splitting may lead to more efficient proof search
algorithms as a result of the identification and removal of search space redun-
dancies, but there is a gap to be filled between the fundamentals, as presented
here, and an actual implementation. Hopefully, however, this thesis provides
the necessary theoretical foundation for the future work.
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[Häh01] Reiner Hähnle. Tableaux and Related Methods. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 3, pages 100–178. Elsevier Science, 2001.

[HB39] David Hilbert and Paul Bernays. Grundlagen der Mathematik, vol-
ume 2. Springer, Berlin, 1939.

[Her30] Jacques Herbrand. Recherches sur la Théorie de la Démonstration. PhD
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